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Abstract

With the ever evolving volume of cosmological data available, we need a way to distinguish
between different inflationary models in a robust manner. We apply Bayesian model comparison
to selected inflationary models with a monomial inflaton potential. We also incorporate the new
inflection point inflation model in the analysis and compare its predictions and Bayesian evidence
to the other inflaton potentials.

We use Bayesian evidence to quantify the model comparison. This usually involves a multi-
dimensional integral which is typically very computationally expensive. However, we employ
PolyChord, a novel nested sampling algorithm that efficiently samples high-dimensional param-
eter spaces. This is coupled with ModeCode, the inflationary perturbation equation solver. We
also couple them with CosmoMC for post-inflationary cosmological parameter estimation.

We also quantify the impacts of dark matter in explaining the cosmic microwave background
temperature angular power spectrum using a χ2 analysis. We demonstrate the predictive power
of dark matter and show its drastic improvement to the fit to data.
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Chapter 1

Introduction

Observations of the cosmic microwave background (CMB) allow us to perform cosmological
parameter estimation and put constraints on inflationary models. In this dissertation we look
at two facets of cosmology, model selection applied to inflationary models, and quantifying the
‘need’ for dark matter in explaining the CMB (temperature) angular power spectrum.

We are interested in using model selection to discriminate between different inflationary models.
In particular, we perform evidence calculations with a new model, the inflection point inflation
model, which has not been done before. We also extend ModeCode, the inflationary perturbation
equation solver, to include the inflection point inflation model for the evidence calculations. We
recover the broad conclusions from the 2015 Planck analysis for the other inflationary models.
Additionally, we explore the impacts of different likelihood combinations and reheating scenarios.

We also demonstrate the necessity of dark matter in explaining the CMB angular power spectrum
and quantify, with a χ2 analysis, the extent to which dark matter impacts the cosmological
best fit. In this way, we ascribe a probability to how a dark matter-less universe can explain
current measurements of the CMB compared to when dark matter is included in the mix. The
physical implications of this are well-known and well-understood, but the quantitative analysis
we perform has not been done before.

We start with a review of inflation in Chapter 2 and introduce model selection for the project.
In Chapter 3 we review the CMB and the angular power spectrum. We report our evidence
calculations and triangle plots in Chapter 4 for various inflationary models, likelihood combina-
tions and physical scenarios. In Chapter 5, we demonstrate the extent to which dark matter is
necessary to explain the current measurements of the CMB angular power spectrum. Finally in
Chapter 6 we conclude the dissertation.
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Chapter 2

Inflation

2.1 History

Cosmology, in part, attempts to provide an answer to the age-old questions - where did we
come from? How did everything come to be? Efforts started with the work of Edwin Hubble
in 1923 (A. Guth, 1997). Using the 2.5m Hooker telescope atop Mt. Wilson in California,
Hubble used a Cepheid variable in the Andromeda Galaxy (‘nebula’ back then) to show that
our Milky Way galaxy is not all there is in the universe. Hubble then, with his assistant Milton
Humason in 1928, made observations of Cepheids in 24 other galaxies and inferred the distances
to those galaxies. In combination with the redshifts determined by Slipher, Hubble inferred the
redshift-distance relation (Hubble, 1929).

Figure 2.1: Radial Velocity-Distance Relation among Extra-Galactic Nebulae.

Hubble’s observations showed that galaxies further away are receding from us at faster speeds.
This led to the paradigm-changing idea of the expansion of the universe, and gave rise to the
development of the Big Bang theory. Over the forthcoming three decades, key players such as
Georges Lemâıtre, Ralph Alpher, Robert Herman, and George Gamow polished the Big Bang
theory.

In 1965, Arno Penzias and Robert Wilson of Bell Laboratories detected the cosmic microwave
background (CMB) radiation. This is remnant radiation leftover from the Big Bang. This

7



Figure 2.2: Cosmic microwave background as seen by Planck

radiation is a result of the recombination of electrons and nuclei, which decreased the scattering
rate of photons, allowing them to propagate freely throughout the universe. This occurred
around 380,000 years after the Big Bang, when the temperature was about 3000K (corresponds
to visible wavelengths). It is worth noting that recombination did not occur at a single instant
of time, but over an interval of 100,000 years. We expand on this in Section 3.1. Cosmological
expansion redshifted the radiation to wavelengths in the microwave region of the electromagnetic
spectrum today. The best map we have of the CMB1 (Fig. 2.2) to date is provided by the Planck
satellite (described later):

The Big Bang theory predicts that the CMB spectrum is a blackbody spectrum. This was
confirmed (Fixsen et al., 1996) by the Far Infra-Red Absolute Spectrophotometer (FIRAS)
instrument on the Cosmic Background Explorer (COBE) instrument in the 1990s. Below is the
blackbody spectrum observed by COBE - this was plotted in Python using the code provided in
Section 8.1 and data from (Fixsen et al., 1996).

Figure 2.3: CMB blackbody spectrum

1http://www.esa.int/spaceinimages/Images/2013/03/Planck CMB

8



The CMB map (Fig. 2.2) shows temperature fluctuations in the sky on the order of 1 part in
100,000, which indicates incredible uniformity. An obvious question arises: how did the universe
get to be so smooth? A logical follow-on question would be to ask: if the universe is that
smooth, why is it not perfectly smooth? This brings up two puzzles, the horizon problem, and
the flatness problem.

2.2 Horizon problem

Let us first obtain an expression for the Hubble parameter H as a function of the redshift z. We
start with the first Friedmann equation(

ȧ

a

)2

=
8πG

3
ρ− k

a2
. (2.1)

The scale factor is a - it parameterises the expansion of the universe. In what follows, we will
assume a flat universe, i.e. k = 0. Now, let us suppose that the density of the universe comprises
ρ = ρM + ρR + ρΛ, for matter, radiation and the cosmological constant respectively. We also
have

ΩM =
ρM
ρc

; ΩR =
ρR
ρc

; ΩΛ =
ρΛ

ρc
, (2.2)

where

ρc =
3H2

0

8πG

is the critical density today; so ΩM + ΩR + ΩΛ = 1. Now, since we know

ρM ∝
1

a3

and

ρR ∝
1

a4
,

and taking a0 = 1 for today,(
ȧ

a

)2

= H2 =
8πG

3
ρc

(
ΩM

a3
+

ΩR

a4
+ ΩΛ

)
=

8πG

3

3H2
0

8πG

(
ΩM

a3
+

ΩR

a4
+ ΩΛ

)
= H2

0

(
ΩM

a3
+

ΩR

a4
+ ΩΛ

)
.

Since

a =
1

1 + z
,

we finally get
H(z) = H0

√
ΩM (1 + z)3 + ΩR(1 + z)4 + ΩΛ. (2.3)

In a matter-dominated universe (just after CMB is released), we can write H(z) ≈ H0(1 + z)
3
2 .

We also introduce the notion of the particle horizon. This quantity ascribes a sense of ‘physical
distance’ in space. It is simply the maximum distance that light can travel over the concurrent
age of the universe. This distance, the comoving redshift-distance relation, is given by

d =
c

a0

∫
1

H(z)
dz ≈ c

a0H0

∫ z

0
(1 + z′)−

3
2dz′ (2.4)
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where c is the speed of light; a0 is the scale factor at some given time; H0 is the Hubble parameter
at some given time; H(z) is the Hubble parameter at some specified redshift z.

Integrating, we get

dH =
2c

a0H0

(
1− 1

(1 + z)
1
2

)
, (2.5)

so the particle horizon at current time is

dH =
2c

a0H0
,

i.e. take z →∞. The angle subtended is

θ =
x

dH
= x

a0H0

2c
.

The particle horizon at the time of last scattering (elaborated below) is

d =
c

a0H0

∫ ∞
zLS

(1 + z′)−
3
2dz′ =

2c

a0H0

1√
1 + zLS

, (2.6)

So the angle subtended by the particle horizon at last scattering is

θ =
a0H0

2c
× 2c

a0H0

1√
1 + zLS

=
1√

1 + zLS
.

We know that zLS ≈ 1100 (Takahashi et al., 2017), which corresponds to θ = 0.03 rad = 1.7◦.

This tells us that regions in the sky separated by scales larger than 1.7◦ should not be causally
connected. However, as we have noted above, the CMB is uniform (isotropy). Conventional Big
Bang theory cannot explain this apparent connectedness of seemingly disconnected regions of
the sky. There is no conventional possibility that these regions could have ever interacted and
thermally equilibrated, which is what the CMB observations imply.

The horizon problem is illustrated through a spacetime diagram (Baumann, 2014) below

Figure 2.4: Spacetime diagram illustrating the horizon problem
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where the conformal time is defined as

τ =

∫ t

0

dt′

a(t′)
,

which is simply the particle horizon divided by c, the speed of light. The Hubble sphere describes
the observable universe. Let us look at any two points on the CMB, p and q, and trace them on
the spacetime diagram. We see from their past light cones that in the early universe, the two
points were acausal, i.e. under conventional Big Bang theory, they would not have interacted.

2.3 Flatness problem

Let us now look at the Friedmann equation 2.1. If we write the critical density as

ρc =
3H2

8πG
,

we can rearrange Eq. 2.1 to get
3H2

8πGρ
= 1− 3

8πGρ

k

a2

=⇒ (Ω−1 − 1)ρa2 = − 3k

8πG
= constant, (2.7)

where

Ω =
ρ

ρc
,

i.e. the quantity stays constant over time. So we have

(Ω−1
0 − 1)ρ0a

2
0 = (Ω−1 − 1)ρa2,

which yields

Ω−1 − 1 = (Ω−1
0 − 1)

ρ0

ρ

(a0

a

)2
(2.8)

We consider matter-radiation equality, where ρM = ρR. From Paper XIII of (Planck Collabora-
tion, Ade, P. A. R., et al., 2016), zeq = 3371. We use ρ = ρ0(1 + z)4. Also,

a =
a0

1 + z
;

then substituting into Eq. 2.8, we get

Ω−1 − 1 =
Ω−1

0 − 1

(1 + z)2
. (2.9)

We know that from Paper XIII of (Planck Collaboration, Ade, P. A. R., et al., 2016) |ΩK | <
0.005. Now, as Ω0 = 1 − ΩK , we have that 0.995 < Ω0 < 1.005, the present value of the total
density. This means that at matter-radiation equality, 0.9999999996 < Ω < 1.0000000004 -
the universe must have been extraordinarily flat. This is even more striking at times on the
order of 10−36 s, when cosmological inflation was purported to take place, where |ΩK | / 10−61

(Baumann, 2009). The conventional Big Bang theory does not propose a mechanism that results
in such a fine-tuned initial condition of the universe. This is the flatness problem.
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2.4 Inflation

2.4.1 Definitions and Conditions

In the early 1980s, Alan Guth, then at Stanford University, proposed a solution (A. H. Guth,
1981) to the horizon problem and flatness problem and also addressed other issues such as
the monopole problem (beyond intended scope of the dissertation). Guth posited the idea of
inflation, a period of rapid expansion of space in the very early universe from 10−35 s to about
10−32 s, with the exact details depending on the energy scale at which inflation takes place.

Inflation is not meant to supplant the Big Bang itself, but supplements the successful aspects of
the Big Bang theory. The Big Bang accounts for the relative abundance of primordial elements,
such as helium and hydrogen (and their isotopes).

By definition, inflation is any epoch where the growth of the size of the universe, is accelerating:

d2a(t)

dt2
> 0.

An alternative condition of inflation is that the Hubble length decreases, i.e.

d

dt

1

aH
< 0.

The Hubble length tells us about the size of the observable universe at any given point in time.
This will be elaborated upon further below when we discuss how inflation solves the horizon
problem. Using the Friedmann equation 2.1 and the continuity equation

ρ̇+ 3
ȧ

a
(ρ+ P ) = 0, (2.10)

we derive (using k = 0)

d

dt

(
ȧ

a

)2

=
8πG

3
ρ̇

2
ȧ

a

[
ä

a
− ȧ

a2

]
=

8πG

3
ρ̇

ä

a
− ȧ2

a2
=

4πG

3
ρ̇

(
ȧ

a

)−1

= −4πG(ρ+ P );

ä

a
= −4πG(ρ+ P ) +

(
ȧ

a

)2

= −4πG(ρ+ P ) +
8πG

3
ρ

= −4πG

3
(ρ+ 3P ).

Since we require ä > 0 (and a(t) > 0), we want

ρ+ 3P < 0 =⇒ P < −ρ
3
,

i.e. we require negative pressure (ρ is a positive quantity).
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2.4.2 Scalar Fields

The negative pressure is typically provided by a scalar field. A scalar field describes scalar (spin-
0) particles and has an associated potential energy. In inflation, these scalar fields are known
as inflatons. One possible inflaton is the Higgs field - ongoing research is being carried out to
determine whether the Higgs inflaton can explain the dynamics of inflation (Bezrukov, 2013),
although this would not be the case for the Standard Model Higgs.

The potential energy of the inflaton may redshift extremely slowly with the expansion of the
universe in the early universe - this is associated with an effective equation of state with a
negative pressure.

The energy density and pressure for a homogeneous scalar field φ = φ(t) is

ρ =
1

2
φ̇2 + V (φ), (2.11)

P =
1

2
φ̇2 − V (φ), (2.12)

with V (φ) being the associated scalar field potential. We will soon discuss different inflationary
models where we specify different forms for the inflaton potentials.

Rewriting the Friedmann equation using the reduced Planck mass MPl = 2.43 × 1018 GeV, we
have (with k = 0)

H2 =

(
ȧ

a

)2

=
ρ

3M2
Pl

where H is the Hubble parameter. Now, along with Eq. 2.11, we get

H2 =
1

3M2
Pl

[
1

2
φ̇2 + V (φ)

]
. (2.13)

Next, substituting the time derivatives of Eq. 2.11 and Eq. 2.12 into Eq. 2.10, we obtain

ρ̇+ 3
ȧ

a
(ρ+ P ) = 0

φ̇φ̈+ φ̇
dV

dφ
+ 3Hφ̇2 = 0

φ̈+ 3Hφ̇ = −dV
dφ

,

which is the Klein-Gordon equation, the equation of motion describing the evolution of a scalar
field (an inflaton in particular).

At the end of inflation, there are two general scenarios that could have taken place: either all
of the potential energy of the inflation field instantaneously decayed into relativistic Standard
Model particles (instant reheating), or that this reheating process occurred over a long, gradual
timescale (Easther, Flauger, & Gilmore, 2011). For this project, we adopt the latter reheating
scenario. This will be elaborated upon in Chapter 4.

2.4.3 Slow-Roll Inflation

When analysing inflationary models, we employ the slow-roll approximation, which posits that

φ̇2 � V (φ),
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i.e. the kinetic term is negligible. From (2.13) then, we have

H2 ' V (φ)

3M2
Pl

,

and the Klein-Gordon equation becomes

3Hφ̇ ' −dV
dφ

as φ̈� 1.

In order for these approximations to be hold, the slow-roll conditions have to be satisfied, these
are

ε(φ)� 1, (2.14)

|η(φ)| � 1; (2.15)

the slow-roll parameters are defined as

ε(φ) =
M2
Pl

2

(
V ′

V

)2

, (2.16)

η(φ) = M2
Pl

V ′′

V
, (2.17)

where the primes denote derivatives with respect to the inflaton.

For the sake of illustration, say for instance we have

V (φ) =
1

2
m2φ2,

then with

V ′(φ) = m2φ,

the slow-roll conditions (2.14) and (2.15) dictate that

φ2 � 2M2
Pl.

As long as the slow-roll conditions are satisfied, inflation will proceed until the inflaton ap-
proaches the minimum (i.e. kinetic energy is no longer negligible) at which point inflation stops
(i.e. when ε = 1).

We can quantify the amount of inflation with the number of e-folds, i.e.

N(t) ≡ ln

(
a(tend)

a(t)

)
,

where N(t) describes how much inflation occurred from time t until tend, the time at the end of
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inflation. We can express this as

N(t) = ln
a(tend)

a(t)
(2.18)

=
[
ln(a(t′))

]tend
t

(2.19)

=

∫ tend

t

ȧ

a
dt′ (2.20)

=

∫ tend

t
Hdt′ (2.21)

=

∫ φend

φ
H
dt′

dφ
dφ′ (2.22)

' −
∫ φend

φ
H

3H(
dV
dφ

)dφ′ (2.23)

=

∫ φ

φend

3H2 1

V ′
dφ′ (2.24)

' 1

M2
Pl

∫ φ

φend

V

V ′
dφ′. (2.25)

For example, in the canonical case V = m2φ2/2,

N(t) =
1

M2
Pl

∫ φ

φend

φ′

2
dφ′ =

1

2M2
Pl

[
φ2

2
−
φ2

end

2

]
.

In order to solve the horizon problem (below), inflation predicts that there should be 60 e-folds
of expansion.

2.4.4 Horizon Problem

The horizon problem is solved by inflation. We illustrate the solution using this spacetime
diagram (Baumann, 2014) in Fig. 2.5. This is equivalent to Fig. 2.4, with the inflationary
picture incorporated. As mentioned above, one of the conditions of inflation is that the Hubble
length, 1/aH, decreases. This is illustrated in the diagram as the two converging light grey lines
moving upwards in the diagram towards the ‘bottleneck’.

Recall that the Hubble length tells us about the distance that some given particle can travel
over one expansion time 1/H. Now consider again the two arbitrary points in the CMB, and
with the inflationary picture in mind, trace their past light cones. The two disparate CMB
points were, during inflation, able to be in causal contact with each other as they were within
the Hubble radius at that time. Thus the two points were able to interact with each other and
be in thermal equilibrium. After inflation, the universe undergone its conventional growth in
size to the current universe. This explains why the universe is so homogeneous - points in the
CMB which are acausal today, were in causal contact in the very early universe.

2.4.5 Flatness Problem

As mentioned above, inflation solves the flatness problem. We see how this is the case. Earlier
on, we derived Eq. 2.7,

(Ω−1 − 1)ρa2 = − 3k

8πG
∈ R.
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Figure 2.5: Spacetime diagram with inflationary phase

Inflation posits that the universe undergoes rapid expansion, i.e. that a grows exponentially.
During inflation, ρ is roughly constant. This means that the quantity ρa2 is growing extremely
quickly. Since the right hand side is constant as all the quantities are constants, this means
that whatever the initial value of (Ω−1 − 1), it will be very close to 0 at the end of inflation,
i.e. Ω is very close to 1. In fact, it will be around 10−61, the value quoted in Section 2.3. This
means that inflation drives Ω to 1; inflation drives the universe to flatness. After inflation, this
quantity (parameterised by ΩK) could increase to its present value of around 0.005 (Planck
Collaboration, Ade, P. A. R., et al., 2016). This solves the flatness problem.

2.4.6 Bayesian Model Selection

We will discuss this in greater detail in Chapter 4, but let us first summarise the aim. We wish
to be able to quantitatively compare different inflationary models. Specifically, we would like
to discuss how likely any one inflationary model is able to explain the current observations over
another model. To do this, we employ Bayesian model selection. We make use of a quantity,
the ratio of Bayesian evidences (model-averaged likelihood) to tell us the relative betting odds
of the models being able to explain the current universe.

To specify any inflationary model (Easther & Peiris, 2012), one needs to put forward an inflaton
potential. For this project, we have mainly considered inflationary potentials of monomial form,
i.e.

V (φ) = λ
φn

n
.

We look at the cases where n = 2/3, 1, 2, 4. We will also look at the novel inflection point
inflation model. We also have to specify the priors (initial probability) for post-inflationary
parameters, such as τ , the optical depth, and the baryonic matter content, Ωbh

2.
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Chapter 3

Cosmic Microwave Background

The cosmic microwave background (CMB) is relic radiation from the early Universe. We will
discuss below how this relates to the reheating phase just after inflation, and also the recombi-
nation phase that ended around 380,000 years after the Big Bang. In this chapter, we go into
more detail about the formation of the CMB, how it is detected, and the analysis tools that
we employed to study the CMB. It is by studying the CMB that we can understand many of
the nuances of the Big Bang theory, and it even tells us something about the composition of
the universe. In particular, to explain the CMB, dark matter is required in the recipe. We will
discuss this in Chapter 5.

3.1 Formation

In the previous chapter, we posited that inflation was driven by some scalar field that we call the
inflaton. In talking about the CMB, we asked the following: why is the universe not perfectly
smooth? This can be answered by invoking quantum fluctuations of the inflaton (Liddle & Lyth,
2000). During inflation, these quantum fluctuations were stretched to large macroscopic sizes,
much larger than the Hubble scale, that is they were outside the particle horizon (i.e. outside
causality), thus unable to evolve and were ‘frozen-in’. When inflation ended, the Hubble length
increased again (expansion of universe) and these ‘frozen-in’ quantum fluctuations re-entered
the particle horizon. These became the seeds for structure formation (i.e. CMB anisotropy).
We look briefly into the details of how this structure formation came about.

After the reheating phase of the post-inflationary universe where the inflaton decayed into Stan-
dard Model particles, the universe entered the electroweak epoch (Liddle & Lyth, 2000) which
contained quarks, anti-quarks and gluons, mediators of the strong nuclear force. As the uni-
verse expanded and cooled, quarks were bound into hadrons (10−12 − 1 s), neutrinos decoupled
from baryonic matter (1 s), and nucleons formed atomic nuclei (mainly hydrogen and helium-4;
10 − 1000 s). At this stage we get a plasma ‘soup’ of photons and baryons which is referred to
as the photon-baryon fluid.

About 380,000 years after the Big Bang, the temperature was roughly 3000 K. The universe
cooled enough to the stage where electrons could combine with atomic nuclei to form atoms. At
this point, the photons decoupled from the matter and were no longer in thermal equilibrium
with matter. The photons then propagated freely throughout the universe. The Universe became
transparent.

We noted above that recombination was not instantaneous. We can illustrate this through the
photon visibility function in Fig. 3.1, which tells us about the probability that any given photon
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was last scattered for some redshift interval. We can approximate the photon visibility function
(Jones & Wyse, 1985) by

p(z) = e−τ
dτ

dz
= 5.26× 10−3

( z

1000

)13.25
e−0.37( z

1000)
14.25

.

Figure 3.1: Photon Visibility Function

In cosmological parlance, this is referred to as the ‘surface of last scattering’. It is only towards
the end of this recombination phase where the mean free path of most photons approached
the current age of the universe (multiplied by the speed of light). Using the Python non-linear
curve-fitting function scipy.optimize.curve fit, we can approximate this photon visibility function
(PVF) via a Gaussian. We then get that the PVF peaks at

z = 1050.73± 0.11,

and has a width of
σz = 80.60± 0.11.

To get a first approximation to the corresponding number of years, we use Eq. (2.3) and assume
ΩM ≈ 1 (matter-dominated), so

H(z) = H0(1 + z)
3
2 ,

then

ȧ

a
= H0a

− 3
2 (3.1)

√
a
da

dt
= H0 (3.2)∫ a

0

√
a′da′ =

∫ t

0
H0dt

′ (3.3)
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2

3
a

3
2 = H0t (3.4)

∴ t =
2

3

a
3
2

H0
=

2

3H0(1 + z)
3
2

. (3.5)

If we have
H0 = 100h kms−1Mpc−1 ≈ 3.24× 10−18h s−1,

with c = 3× 108 m s−1, 1 pc = 3.26 light years, and h = 0.6731± 0.0096 (Planck Collaboration,
Ade, P. A. R., et al., 2016), the time difference between 5% (z5% = z + 2σz = 1211.92 ± 0.25)
of photons being able to scatter, and 95% of photons being able to scatter (z95% = z − 2σz =
889.54± 0.25), is

∆t = t95% − t5% =
2

3H0

[
1

(1 + z95%)
3
2

− 1

(1 + z5%)
3
2

]
≈ (4.26± 0.02)× 1012 s = (135200± 600) years.

A more careful calculation would take into account the ionization history and the sub-dominant
radiation component at the time of recombination.

The error was calculated in Python (see Section 8.2) using

σ∆t =

√(
∂∆t

∂H0

)2

σ2
H0

+

(
∂∆t

∂z1

)2

σ2
z1 +

(
∂∆t

∂z2

)2

σ2
z2 ,

where

∂∆t

∂H0
= − 2

3H2
0

[
1

(1 + z95%)
3
2

− 1

(1 + z5%)
3
2

]
;

∂∆t

∂z95%
= − 1

H0

1

(1 + z95%)
5
2

;

∂∆t

∂z5%
=

1

H0

1

(1 + z5%)
5
2

.

What we have described above was the primary contribution to the anisotropy of the CMB.
There were also secondary contributions to the CMB anisotropy, which occurred between the
surface of last scattering and the observer (us). One example of this is the Sunyaev-Zel’dovich
effect (Planck Collaboration, Aghanim, et al., 2016b), where the CMB was distorted due to
the inverse Compton scattering of CMB photons through collisions with electrons in galactic
clusters. Another prominent secondary contribution is attributed to the scattering of the CMB
photons by ions that were formed due to their liberation from neutral atoms by ionising radiation.
This ionising radiation could have originated from supernovae, or it could be the radiation from
young, massive Population III stars. This is an active area of research.

3.2 Detection

The primary and secondary anisotropies described above make up the CMB that we see today.
The relic photons, as they traversed through the universe, were also gravitationally lensed by
galactic clusters along the line-of-sight. The Planck satellite eventually captured some of these
photons. Planck was launched on 14 May 2009, and was scientifically operational from 12
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August 2009 to 23 October 2013 (Planck Collaboration, Adam, Ade, Aghanim, Akrami, et al.,
2016). Planck represents, to date, the state-of-the-art scientific observatory to probe the CMB
to unprecedented resolution and sensitivity.

In order to have achieved the required level of sensitivity to detect the CMB anisotropies, the
instruments were cooled down to 0.1 K to minimise thermal noise. For the High Frequency
Instrument (HFI), He-3 was needed. For the low-frequency counterpart, the Low Frequency
Instrument (LFI), He-4 was used to cool the instrument down to a modest 20 K. The HFI had an
array of 54 detectors; light was focussed onto them via 32 feed horns (signal receivers). The HFI
collected data from 6 frequency bands (100, 143, 217, 353, 545 and 857 GHz) using bolometers,
sensitive thermistors used to detect temperature anisotropies. Since the CMB is currently T =
2.7255 K and is uniform to 1 part in 100,000, it was paramount that the instruments were cooled
down to low enough temperatures to minimise thermal noise.

The LFI collected data from 3 frequency bands (30, 45, and 70 GHz) using High Electron Mo-
bility Transistors, under the instrument horns, which amplified the incoming analog signals and
digitised them. Fig. 3.2 below summarises the frequencies covered by Planck.

Figure 3.2: Frequency bands used

The Planck satellite also carried out measurements of the polarisation of the CMB photons.
In inflationary model selection (Chapter 4), these will serve to better constrain r, the ratio of
tensor amplitudes to scalar amplitudes.

To produce the CMB map for meaningful interpretation, there is a need to systematically and
meticulously extract the CMB signal from the different frequency channels, and to account
for the systematic/foreground effects. One such algorithm is SMICA (Cardoso, Le Jeune, De-
labrouille, Betoule, & Patanchon, 2008). In a given signal at a given frequency ν in direction θ,
it is made up of a linear combination

Xν(θ) = XCMB
ν (θ) +XSZ

ν (θ) + ...+Nν(θ),
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where Xi
ν is the absolute contribution to the signal due to some component i (e.g. Sunyaev-

Zel’dovich or galactic emission); Nν(θ) incorporates instrument noise. The data obtained by
Planck was first processed in Fourier space, where relative weights for the various source contri-
butions were determined; the end result was a CMB map that was foreground-subtracted and
contamination-free (as best as possible). Associated with the map are likelihood codes used in
parameter estimation and inflationary model selection. This will be elaborated upon in Section
3.4.

As mentioned above, T ≈ 3000 K at the time of last scattering. The expansion of the universe
caused space, and hence the wavelength of a photon from the CMB, to stretch by about 1100
times, making the CMB cooler as the density fell. The temperature of the CMB is currently
measured at T = 2.7255 K. The associated wavelength is about 2 mm, i.e. microwaves. The
CMB has a nearly ideal blackbody spectrum that peaks at ν ≈ 160 GHz. The CMB is nearly
uniform, with fluctuations on the order of 1 part in 100,000. These observed anisotropies can
be analyzed with a power spectrum.

3.3 Angular Power Spectrum

The CMB angular power spectrum (Planck Collaboration, Aghanim, et al., 2016a) is

Figure 3.3: CMB Angular Power Spectrum; the bottom plot shows the residuals.

The CMB can be represented with spherical harmonics. They are an orthonormal basis for
specifying functions defined on a spherical surface (i.e. sky). In this way, we decompose the
CMB into spherical harmonics, and characterise the temperature fluctuations as a function of
the angular scale. The temperature fluctation is defined as

∆T =
δT

TCMB
,
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where δT = T − TCMB, and TCMB is the average temperature of the CMB. We have ∆T =
∆T (θ, φ), i.e. the temperature fluctuation is dependent on which direction we look at in the
sky. If we work in Fourier space, the temperature fluctuation is defined as

∆T (θ, φ) =

∞∑
l=0

m=l∑
m=−l

almYlm(θ, φ),

where

alm =

∫∫
∆T (θ, φ)Y ∗lmdθdφ

are the spherical harmonic coefficients Ylm. Since alm represents the average fluctuation about
some mean, we have that 〈alm〉 = 0. A meaningful quantity is to write the power spectrum of
the CMB as

Cl = 〈|alm|2〉 ,

i.e. correlations in temperature by angular position. By convention, we then plot Dl [in (µK)2]
as a function of l, the multipole number, where

Dl =
l(l + 1)

2π
Cl × T 2

CMB,

and we write TCMB in microKelvins.

3.4 Likelihoods

Crudely speaking, the likelihood is the probability of obtaining the data given some model.
The cleaning and calibration of these likelihood maps was a heavily involved process for each
instrument (Planck Collaboration, Adam, Ade, Aghanim, Arnaud, et al., 2016). We have briefly
discussed this above. The interested reader can refer to the papers outlined in the Introduction of
the Planck 2015 results paper XI (Planck Collaboration, Aghanim, et al., 2016a). The associated
statistics that go into the analysis can be understood from (Tegmark, 1997). We will explicitly
mention the likelihoods employed in relation to the results in Chapters 3 and 4.

First we look at the low-l likelihood, which the Planck collaboration define to be l ≤ 29. This will
contain temperature and polarisation information for the large angular scales. The information
is expressed in maps of the three Stokes parameters {T,Q,U}, where T refers to unpolarised
intensity and Q,U refer to the linear polarisation state of the CMB photons. After employing
a component separation algorithm such as SMICA (described above), one may summarise the
information with a data vector (Planck Collaboration, Aghanim, et al., 2016a)

mX = sX + nX ,

where sX corresponds to the CMB signal, modelled as a set of statistically isotropic Gaussian
random fields. The quantity n refers to the instrumental noise; X refers to the component -
T being temperature, E being the E-mode polarisation (curl-less vector field) and B being the
B-mode polarisation (divergence-less vector field).

Autocorrelations and cross-correlations CAB
l for AB ∈ {TT,EE,BB, TE} are calculated, re-

sulting in the covariance matrix

S(Cl) =

lmax∑
l=2

∑
AB

CAB
l PAB

l .
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PAB
l refers to the instrumental beam-weighted sum over the associated Legendre polynomials.

For temperature for example, (
PTT
l

)
i,j

=
2l + 1

4π
B2
l Pl(n̂i · n̂j),

where n̂i is a unit vector in the direction of pixel i; Bl represents the product of the Legendre
coefficients (polynomial) corresponding to the instrumental beam, and the pixel windows. This
takes into account the (possible) biases introduced due to the finite resolution of the Planck
instruments (Wehus, Ackerman, Eriksen, & Groeneboom, 2009). See (Tegmark & de Oliveira-
Costa, 2001) for the treatment of the polarisation components.

Like the CMB signal, the instrumental noise is modelled to have a Gaussian distribution, with
associated covariance matrix N - determined by detector sensitivity among other factors. M is
defined to be the full covariance of the data, M = S +N . The final likelihood expression then
reads

L(Cl) := P (m|Cl) =
1

2π
√
M
e−

1
2
mTM−1m,

where we note that the conditional probability P (m|Cl) defines our likelihood L(Cl).

The corresponding likelihood expression for the high-l case is much more complicated (Planck
Collaboration et al., 2014), but the idea is the same - given a signal in a given region of the
sky for some given instrument with associated frequency detection band, separate it into the
cosmological CMB signal and noise, and take into account smoothing effects (instrument beam
function), to produce a likelihood map of the CMB.

Likelihoods from BAO (baryon acoustic oscillation) measurements from the Sloan Digital Sky
Survey (Anderson et al., 2014) and the BICEP2/Keck Array collaboration (BICEP2 Collabora-
tion et al., 2016) were also incorporated in the analyses reported in Chapters 3 and 4.

3.5 CAMB

In addition to the data that we obtain from the CMB, we must employ numerical tools to further
understand the CMB. The Code for Anisotropies in the Microwave Background (CAMB) by
Antony Lewis, Anthony Challinor and Anthony Lasenby (Lewis, Challinor, & Lasenby, 2000)
is one such tool, and is currently the best code available for exploring different cosmological
models. It is actively maintained by Antony Lewis1, and there is a Python wrapper available
with associated extensive documentation2.

CAMB is a parallelised version of CMBFAST (Seljak & Zaldarriaga, 1996). Carrying out the
calculations based on the linear theory of cosmological perturbations is computationally expen-
sive, so the novelty behind CMBFAST is that it independently treats geometrical and dynamical
contributions to the CMB anisotropies (looking at metric, photon and baryonic perturbations).
The corresponding system of (very complicated) equations is then numerically evolved from the
radiation-dominated era to the current time.

In this project, we use parameter estimation to give us parameter constraints for various cos-
mological models. To do this, we employ the Markov Chain Monte-Carlo (MCMC) method, the
Metropolis-Hastings algorithm (described in Chapter 5). We will also incorporate the BOBYQA
(J. D. Powell, 2009) algorithm for maximum likelihood searches. Together with CAMB, the suite
of tools is known as CosmoMC 3 (Lewis & Bridle, 2002).

1http://cosmocoffee.info/
2http://camb.readthedocs.io/en/latest/
3http://cosmologist.info/cosmomc/
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3.6 Parameterisation

We can parameterise the CMB angular power spectrum by

P(k) = As

(
k

kp

)ns−1

,

where As is amplitude of the density perturbations in the early universe, k is the wavenumber,
and kp is the arbitrary pivot scale usually fixed at 0.05hMpc−1 (h = H0/100). We will also
quote some values with respect to the pivot scale 0.002hMpc−1. The scalar spectral index, ns,
characterises how the power spectrum varies as the scale changes. A value of ns = 1 would
indicate a scale-invariant power spectrum.

We can understand As and ns better by looking at how varying these affect the angular power
spectrum. This is calculated using CAMB, and we use the baseline cosmological model with
parameters ns, ln(1010As), τ (same as that below Fig. 3.1), H0, Ωch

2, and Ωbh
2. Reference

values were obtained using Table 4 from (Planck Collaboration, Ade, P. A. R., et al., 2016).
Looking at As,

Figure 3.4: Changing ln(1010As)

We see that increasing the size of the density perturbations in the early universe lead to larger
temperature fluctuations in the CMB today, by definition. The power spectrum does not shift
left or right because the magnitude of these fluctuations would affect all angular scales indis-
criminately.
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Figure 3.5: Changing ns

In the case for the scalar spectral index, we see that increasing it will reduce the temperature
fluctuations on larger angular scales (i.e. lower l). The scalar spectral index scalar, ns, relates
to the inflation potential - we will see this in the next chapter.

There are also higher order exponents to the power spectrum (Planck Collaboration, Ade, et
al., 2016), i.e.

P(k) = As

(
k

kp

)ns−1+ 1
2

dns
dln(k)

ln
(

k
kp

)
+ 1

6
d2ns

dln(k)2

[
ln
(

k
kp

)]2
+...

where
dns
dln(k)

is defined as the running of the scalar spectral index, and

d2ns
dln(k)2

is the running of the running of the scalar spectral index. These are observables that can be
derived from inflationary theory, but are beyond the scope of the current work.

3.7 Implications

Accurate measurements of the CMB allow us to determine parameters characterising the prop-
erties of the universe. Examples include the universe’s geometry, composition, and reionisation
history. Here we summarise the Planck observations and briefly mention how the angular power
spectrum relates to the physics of the CMB.

Earlier on in this chapter, we discussed the formation of the CMB. We go back to the era of the
photon-baryon fluid, the plasma ‘soup’ of baryons and photons. This fluid was not homogeneous -
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there were regions of overdensities and underdensities. The overdensities corresponded to deeper
gravitational potential wells which baryons fell into. These potential wells could have also been
set up by dark matter (more in Chapter 5), which only interact gravitationally. As the baryons
fell into the well, the plasma (in the region) heated up, which increased the outward radiation
pressure. The compression crescendoed to some maximum value, then the plasma expanded
and cooled, relaxing the radiation pressure. As this radiation pressure fell, the (gravitational)
effects of the deeper potential wells took over again and resulted in another compression.

This interplay between the dominance of radiation pressure and gravitational effects (due to
overdensities and/or dark matter) set up acoustic oscillations in the photon-baryon fluid (Reid,
Kittell, Arsznov, & Thompson, 2002). The details of the evolution of this plasma is described
by the Einstein-Boltzmann equations (Pan, Knox, Mulroe, & Narimani, 2016).

The angular size of the largest fluctuation in the baryon-photon fluid after photon decoupling is
given by (Moore, 2012)

∆φ ≈


√
aPDk√

3sin(k)
, Ωk < 0

√
aPD√

3
, Ωk = 0

√
aPDk√

3sinh(k)
, Ωk > 0

,

where k ≡ 2
√
|ΩK |/Ωm. With aPD ≈ 1100, we have that for a flat universe,

∆φ ≈ 1√
3

1√
1 + 1100

≈ 0.0174 rad ≈ 1◦,

which corresponds to about l ≈ 200. ∆φ is plotted against ΩK in Fig. 3.6 (see Section 8.3 for
code). We see that if the universe had negative curvature instead (ΩK < 0, closed universe),
∆φ would be larger; if the universe had positive curvature (ΩK > 0, open universe), ∆φ would
be smaller.

Figure 3.6: ∆φ against ΩK

In Fig. 3.3, there are a number of peaks in the CMB angular power spectrum. There are three
peaks of notable amplitude. The odd-numbered peaks correspond to the maximal ‘compres-
sion’ phase in the photon-baryon fluid oscillations we outlined above; the even-numbered peaks
correspond to the maximal ‘rarefaction’ phase. The locations of these acoustic peaks tell us
something about the universe’s geometry and corresponding cosmology. For example, the fact
that Planck observes the first acoustic peak in the CMB angular power spectrum at around
l ≈ 200 is consistent with the idea that the universe is flat (ΩK = 0).

26



Chapter 4

Bayesian Evidence and Model
Selection

Over the last decade, Bayesian statistics has become more ubiquitous in astronomical data
analysis. There are many pedagogical introductions with applications to cosmology (e.g. Trotta,
2017).

In this project, we use both parameter estimation and model selection under the Bayesian
framework. We reserve the discussion of parameter estimation to the next chapter, looking at
model selection first. What is being done here is comparing the relative ‘betting odds’ of two
models in explaining the current observations of the universe. In particular, we look at the
relative ‘likeliness’ of different inflationary models - i.e. asking which model is most likely to
account for observations.

We use ModeCode and PolyChord (described below) to quantify the impact of different reheating
scenarios. We then introduce the inflection point inflation model and compare our results to
the 2015 Planck analysis of inflationary models. We perform new evidence calculations with
the inflection point inflation model, which is not available in the literature. We also assess the
consistency of our results from other inflationary models with Planck’s analysis. Additionally,
we look at including the BK14 likelihood from the BICEP2/Keck Array analysis.

4.1 Bayesian Evidence

4.1.1 Theory

As written in Section 2.4.6, the ratio of the Bayesian evidences of two models will tell us how
likely one model is over the other, in explaining current observations. Formally, the Bayesian
evidence, E, is defined as

E =

∫
dθNP (θi)L(d|θi);

the integral of the likelihood, the probability of getting the data given some model, over the
parameter volume defined by {θ1, ..., θN}; this is weighted by the prior P (θ), a normalised joint
probability distribution of initial guesses for the range of values the parameters take.

We write the ratio of the Bayesian evidences of two models, Ea and Eb, as

∆ln(Eab) := ln

(
Ea
Eb

)
.
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The evidence ratio is usually compared using the Jeffreys’ scale, which provides a qualitative
interpretation (Jeffreys, 1998):

∆ln(Eab) Evidence

[0, 1.1) Weak
[1.1, 3) Definite
[3, 5) Strong
[5,∞) Very strong

Table 4.1: Jeffreys’ Scale

An evidence ratio of ∆ln(Eab) implies an odds ratio of e5 : 1, or about 150 : 1.

4.1.2 Calculation

In calculating the evidence values for any given model, one has to evaluate an integral over many
parameters, and this is very computationally expensive. In this project, the typical number of
parameters considered is around 30. This will involve both cosmologically relevant parameters
(e.g. H0, Ωch

2) and nuisance parameters, which are not interesting in and of themselves but must
be incorporated in the analysis. In particular, the nuisance parameters relate to the likelihood
data (e.g. from Planck) that we will use in calculating the evidence.

We employ ModeChord1, which is a combination of CosmoMC, PolyChord2 3 and ModeCode4.
We have discussed CosmoMC above. PolyChord (Handley, Hobson, & Lasenby, 2015) is a nested
sampler (Skilling, 2006) which utilises slice sampling to sample multidimensional likelihoods.
Simply put, the relationship between the likelihood and the prior is estimated, then for any given
parameter X that is integrated over, the region (i.e. integrand associated with the variable)
is ‘sliced’ and then sampled from [0, f(x)], where f(x) is the probability density function of
X. A line is drawn across y = f(x), and the algorithm then samples the point (x, y) along
the curve. In the multidimensional equivalent iteration, this sampling is repeated a number
of times, resulting in a chain of values with each sampled value correlated to the previous
iteration. ModeCode (Mortonson, Peiris, & Easther, 2011, Easther & Peiris, 2012, Norena,
Wagner, Verde, Peiris, & Easther, 2012) is a code solving for the scalar/tensor perturbation
spectra for inflationary models. ModeChord also produces posterior chains, which will be useful
in generating joint posterior probability distributions (in the form of triangle plots) for relevant
cosmological parameters.

Both Metropolis-Hastings (see Chapter 4) and slice sampling are MCMC algorithms, but slice
sampling is the method of choice in PolyChord. Slice sampling is more efficient than Metropolis-
Hastings once the number of parameters involved in the evidence calculations is large, i.e. over
10 (Handley et al., 2015).

In the Appendix, we will give an example of an operational input parameter file (Section 8.5)
used in the project. However, we briefly point out that there are two relevant PolyChord tuning
parameters used in the sampling process, the number of live points nlive and num repeats. Es-
sentially nlive is akin to a resolution parameter - a larger number of live points roughly equates
to sampling the integrand (for the evidence) more thoroughly. This is typically set to about 25×
the number of parameters involved. num repeats relates to the length of the slice sampling chain

1https://github.com/ucl-cosmoparticles/modechord/
2https://ccpforge.cse.rl.ac.uk/gf/project/polychord/
3http://cobaya.readthedocs.io/en/latest/sampler polychord.html
4http://modecode.org/
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that was used in the generation of new live points. Turning this parameter up reduces the cor-
relation between the initial guess for the sample and the final sample value. A low num repeats
results in unreliable evidence estimates (Handley et al., 2015). A typical run sets this value
to roughly 3× the number of parameters involved. Potential pitfalls that arise in practice are
described in Section 8.4.

4.2 Inflationary Model Selection

We employ model selection to discriminate between the different inflationary models. This
project is in part an update of previous work done in Easther & Peiris, 2012.

In order for us to specify an inflationary model, we need the form of the inflaton potential, the
reheating mechanism, and priors for various cosmological and relevant inflationary parameters.

4.3 Models

As outlined in Section 2.4.6, a class of simple inflaton potentials are the monomials of the form

V (φ) = λ
φn

n
.

In particular,

V (φ) =
3

2
λφ

2
3 ;

V (φ) = λφ (linear);

V (φ) =
1

2
m2φ2 (quadratic);

V (φ) =
λ

4
φ4 (quartic).

The Planck analysis (Planck Collaboration, Ade, et al., 2016) also looks at n = 4/3 and n = 3.
We also look at the general inflection point model, laid out in Section 4 of (Musoke & Easther,
2017). The inflaton potential is

V (φ) = λ

(
M2

2
φ− 2

3
∆Mφ3 +

1

4
φ4

)
.

The large field scenario that we specifically looked at was that of the effective quadratic potential
where M � 10MPl, i.e. the inflaton potential is effectively quadratic during the course of
inflation, but the inflection point can substantially modify the dynamics.

4.4 Set-up

With the preceding theory in mind, one can finally start running their first evidence calculation.
See Section 8.4 for a comprehensive tutorial with the hilltop inflaton potential (not used in this
project otherwise).

The likelihoods used in this section can be found in

path to CosmoMC/batch2/
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and they have the extension ‘.ini.’ Here, we use

Designation File name Description

Planck High−l TT plik dx11dr2 HM v18 TT Temperature likelihood for l ≥ 30
Planck lowTEB lowTEB Temperature and polarization likelihood for l ≤ 29

BAO BAO Measurements of baryon acoustic oscillations
BK14 BK14 Data from BICEP2/Keck Array

Table 4.2: List of likelihoods

The bottom two likelihoods refer to likelihoods from BAO (baryon acoustic oscillation) mea-
surements from the Sloan Digital Sky Survey (Anderson et al., 2014), and the BICEP2/Keck
Array collaboration (BICEP2 Collaboration et al., 2016) respectively.

One should note that the combination Planck TT + lowP from Paper XX of the Planck 2015
results (Planck Collaboration, Ade, et al., 2016) is specifying the usage of the first two likelihoods
in Table 4.2 in the parameter file.

One can assume instant reheating, i.e. the inflaton decayed into Standard Model particles
immediately after inflation and the universe became radiation-dominated. This is done by
having the line

DEFAULT(batch2/modecode inst.ini)

in the parameter file and commenting all other reheating files (or remove the lines). Additionally,
in ./batch2/modecode defaults.ini, one should have the logical

instreheat = T

The instant reheating results turned out to be yield overly simplistic results. Thus for most
of the project, we looked at the case of non-instant reheating with following reheating settings
matching that of Planck (Planck Collaboration, Ade, et al., 2016):

• The corresponding reheating file is

DEFAULT(batch2/modecode reheat3a.ini)

• Changed the 4 lines in ./batch2/modecode defaults accordingly

modpk rho reheat = 1.d12
modpk w primordial lower=-0.333333
modpk w primordial upper=0.333333

instreheat = F

Physically speaking, w ≥ 1/3 states that inflation has ended; w ≤ 1/3 stipulates a mix of matter
and radiation, eliminating exotic scenarios such as a ‘stiff fluid’.
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4.5 Results and Discussion

4.5.1 Instant reheating

First we look at instant reheating. This corresponds to wprim = 1/3, where wprim characterises
the primordial equation of state of the corresponding (perfect) fluid in the early universe. Using
the linear potential, and the Planck High−l TT + Planck lowTEB + BAO likelihoods (in
accordance with Planck Collaboration, Ade, et al., 2016), we obtain the following triangle plot
showing the joint posterior distributions (generated by GetDist5, see Section 8.6)

Figure 4.1: V (φ) = λφ with instant reheating

The ranges for ns and r are very narrow (vary up to the 4th decimal place). In previous runs,
Easther attributed this toNpivot, the number of e-folds after the pivot scale left the horizon, being
fixed. For this example, Npivot was given a uniform prior in range [30, 70] with a central value of
50. This suggests that r, the ratio of amplitudes of tensor perturbations and scalar perturbations,
and ns (derived parameters) were stuck in the first place. The line in ./batch2/modecode inst.ini
with

5http://getdist.readthedocs.io/en/latest/plots.html
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N pivot = 50

was commented as well. This might correspond to a tight constraint on the scalar amplitude,
which fixes λ, which fixes Npivot.

4.5.2 Non-instant reheating

We now look at the case where reheating after inflation is not instantaneous. This pertains to
having a uniform prior on wprim in the range [−1/3, 1/3]. We also have that ρth (ρend), the
energy density after thermalisation (at the end of reheating), has the prior [(1 TeV)4, ρend] with
(1 TeV)4 = 1012(GeV)4, i.e.

modpk rho reheat = 1.d12

We use the Planck High−l TT + Planck lowTEB + BAO likelihoods. Here, we will present
evidence ratios and also triangle plots for selected parameters.

We compare between the inflationary potentials

V (φ) =
λ

4
φ4 ; V (φ) =

m2

2
φ2 ; V (φ) = λφ ; V (φ) =

3

2
λφ

2
3 .

The corresponding evidence values will be quoted E4, E2, E1, and E23 respectively. For this
particular run, we had

E4 = −5700.99±0.20 ; E2 = −5680.92±0.19 ; E1 = −5677.94±0.19 ; E23 = −5677.24±0.19.

We choose to quote the evidence ratios with respect to the linear potential.

Evidence ratio Value

ln(E4/E1) −23.04± 0.27
ln(E2/E1) −2.98± 0.27
ln(E23/E1) +0.70± 0.27

Table 4.3: Evidence ratios, relative to the linear potential, corresponding to non-instant reheat-
ing scenario; wint ∈ [−1/3, 1/3], modpk rho reheat = 1.d12

For evaluation with Jeffreys’ scale in Table 4.1, we simply take the absolute value of the evidence
ratios, which would imply that the evidence values are flipped around in the ratio.

We can first see from Table 4.3 that the quartic potential is strongly disfavoured, i.e. there
is very strong evidence against it. Thus the quartic potential can be ruled out definitively as
being the inflaton potential. There is also strong evidence against the quadratic potential, which
suggests that convex inflaton potentials are disfavoured. The evidence ratio between the linear
potential and

V (φ) =
3

2
λφ

2
3

tells us that we cannot discriminate between the two inflaton potentials as there is weak evidence
disfavouring the linear potential, i.e. a mere 2:1 odds.

The inferences are consistent with the results from the 2015 Planck analysis (Planck Collabora-
tion, Ade, et al., 2016). The forthcoming final data release that is expected to take place in the
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next few months6 promises to conjure stronger discriminatory power between the inflationary
models.

To gauge the impact of the reheating assumptions, we now set modpk rho reheat = 1.d-4 ([model] restr),
i.e. ρth has the prior [(100MeV)4, ρend]. We have not included the potential

V (φ) =
3

2
λφ

2
3

for this analysis. Having a lower energy density scale for reheating allows us to ‘see’ closer to
the end of inflation. Blue corresponds to modpk rho reheat = 1.d12, and red corresponds to
modpk rho reheat = 1.d-4.

Figure 4.2: Testing the sensitivity of the reheating energy density for the quartic potential

6https://www.aanda.org/2016-press-releases/1243
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Figure 4.3: Testing the sensitivity of the reheating energy density for the quadratic potential
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Figure 4.4: Testing the sensitivity of the energy density assumption for the linear potential

We see that for all three potentials, the biggest difference is that wprim is pushed towards lower
values for the larger value of ρth. We can see this with the relation (Demozzi & Ringeval, 2012)

ρth = ρende
−3∆N(1+wprim)

where ∆N ≥ 0. Having a larger value for ρth, i.e. a large reheating energy density, would result
in a preference for lower values of wprim.

The corresponding evidence ratios are:
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Reheating energy density ln(E4/E1) ln(E2/E1)

1.d12 −23.04± 0.27 −2.98± 0.27
1d-4 −23.39± 0.27 −3.79± 0.27

Within 0.7σ 1.6σ

Table 4.4: Comparing evidence ratios corresponding to non-instant reheating scenario; wint ∈[
−1

3 ,
1
3

]
, modpk rho reheat = 1.d-4 and modpk rho reheat = 1.d12

The priors are specified thusly:

param[parameter] = ‘central value’ ‘lower bound’ ‘upper bound’ ‘starting width’ ’proposed width’.

The specific priors used here were:

• param[omegabh2] = 0.02225 0.02 0.025 0.0001 0.0001
• param[omegach2] = 0.12 0.08 0.16 0.001 0.0005
• param[theta] = 1.0411 1.00 1.08 0.004 0.004
• param[tau] = 0.09 0.01 0.20 0.001 0.001
• param[omegak] = 0 #specify a single value if we want the parameter to be fixed
• param[logA] = 3.1 2.5 3.5 0.001 0.001
• param[ns] = 0.96 0.8 1.2 0.004 0.002
• param[r] = 0.03 0 2 0.001 0.001
• param[N pivot] = 50 30 70 0.1 0.1
• param[vpar1] = -13.4 -16.0 -10.0 0.1 0.1 #for V (φ) = λφ4/4
• param[vpar1] = -10.3 -13.5 -8.0 0.1 0.1 #for V (φ) = m2φ2/2
• param[vpar1] = -9.4 -13.0 -7.0 0.05 0.05 #for V (φ) = λφ

• param[vpar1] = -9.4 -13.0 -7.0 0.05 0.05 #for V (φ) = 3λφ
2
3 /2

where the priors for the post-cosmological parameters (defined previously) were chosen based
on the runs that was done in Chapter 5.

The evidence ratios from Table 4.4 show that the conclusions do not change, where the quartic
potential is strongly disfavoured due to very strong evidence against it, and there is strong
evidence against the quadratic potential with respect to the linear potential.

4.5.3 Adding the BK14 likelihood

We now introduce the usage of BK14 likelihood from Table 4.2. The first attempts at a run
were not successful. With the same set of priors for the cosmological and inflationary parameters
above, the following error was obtained:

Error in Matrix Diagonalize

Looking through the documentation, the error occurred in the module ./camb/Matrix utils.F90.
The module was used in 6 instances, in the .f90 files in source/: CMBlikes, EstCovmat, GetDist,
Matrix utils new, minimize, samples. We suspect that the error arose because the sampler hap-
pened to probe a region in likelihood space which corresponds to a highly unphysical value of r,
the tensor-to-scalar ratio, but which is allowed by the inflationary prior. This is supported by
results from the run below, where we mostly use the same priors as above, with the following
difference (note the tighter ranges):
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• param[vpar1] = -12.82 -12.9 -12.7 0.001 0.001 # quartic potential
• param[vpar1] = -10.38 -10.5 -10.2 0.001 0.001 # quadratic potential
• param[vpar1] = -9.55 -9.7 -9.4 0.001 0.001 # linear potential

The corresponding triangle plots are

Figure 4.5: Comparing between two different priors for λ in the quartic potential with the BK14
likelihood
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Figure 4.6: Comparing between two different priors for m2 in the quadratic potential with the
BK14 likelihood
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Figure 4.7: Comparing between two different priors for λ in the linear potential with the BK14
likelihood

For the quartic, quadratic, and linear potentials, we see that the posteriors corresponding to
using the BK14 likelihood are narrower, i.e. the joint posterior distributions are tighter and the
corresponding 1D posterior distributions are narrower. This shows the constraining power of
the BK14 likelihood particularly for ns and r, empirical inflationary spectral parameters.

Future work will involve finding out the exact cause of the Matrix Diagonalize error and rerunning
the models with the usual (wide) prior to provide a consistent evidence calculation. There was
not enough time to implement this, but Easther recommended a cut in r (priv. comm.) similar
to that of the cut for As (Easther & Peiris, 2012).
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4.5.4 Inflection Point Inflation

Next let us look at the inflection point inflation model. Since this was a new model to be
implemented, we had to add a new function to camb/modpk potential.f90, which specifies the
potentials, and the corresponding first and second derivatives of the potentials. Nathan Musoke
and I contributed this addition. The inflaton potential is

V (φ) = λ

(
M2

2
φ− 2

3
∆Mφ3 +

1

4
φ4

)
.

We looked at the large field, log prior scenario (Musoke & Easther, 2017) where the following
priors for M,λ and ∆ were suggested:

MPl ≤M ≤ 50MPl;

−6 ≤ log10(|∆− 1|) ≤ 0;

−15 ≤ log10(λ) ≤ 5.

We first note that for ∆−1 > 0, there is a trapping potential for the inflaton, a local maximum.
We focus on the inflection point inflation scenario with ∆ − 1 < 0, which is more physically
interesting. We use the prior −6 ≤ log10(|∆−1|) ≤ −1 instead as log10(|∆−1|) ≈ 0 requires more
careful specification of the initial conditions for inflation. This is appended in modpk potential.f90
thusly (derivatives are added in the obvious fashion; ModeChord was rebuilt):

case(18)
! Inflection point inflation - large field log

M ii = vparams(1)
!Delta ii = (10.d0**vparams(2))+1.d0 !Delta>1
Delta ii = 1.d0 - 10.d0**vparams(2) !Delta<1
lambda ii = 10.d0**vparams(3)

pot = lambda ii * (&
+ M ii**2 /2.0d0 * phi**2 &
- 2.0d0 / 3.0d0 * M ii * Delta ii * phi**3 &
+ 1.0d0 / 4.0d0 * phi**4 &
)

We looked at two different cases, with:

a)MPl ≤M ≤ 20MPl → param[vpar1] = 10.0 5.0 20.0 0.01 0.01;

b)MPl ≤M ≤ 50MPl → param[vpar1] = 5.0 2.5 50.0 0.01 0.01,

with an initial value of the inflaton of 5.0. The Planck High−l, Planck lowTEB and BAO
likelihoods were used for this analysis. We adopted the same reheating scenario as above.

The reason a) was done above was to ‘test things out’. b) corresponds to a more physically
feasible scenario. The priors were chosen based on the analysis done by Musoke and Easther
(Musoke & Easther, 2017).
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Figure 4.8: Comparing between priors for M in the inflection point inflation model; blue corre-
sponds to a); red corresponds to b)

We extend Table 4.3 by reporting the evidence ratio calculations, with respect to the linear
potential, for the inflection point inflation potential:

Evidence ratio Value

ln(E4/E1) −23.04± 0.27
ln(E2/E1) −2.98± 0.27
ln(E23/E1) +0.70± 0.27

ln(Ein,20/E1) −2.94± 0.27
ln(Ein,50/E1) −2.11± 0.27

Table 4.5: Evidence ratios, relative to the linear potential, corresponding to non-instant reheat-
ing scenario; wint ∈ [−1/3, 1/3], modpk rho reheat = 1.d12 including the inflection point inflation
potential. Ein,20 refers to case a); Ein,50 refers to case b).
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Our interpretations vary depending on which case we look at, i.e. which prior we adopt for M .
Truncation in the prior for M is important since the (blue) joint posterior distribution in Fig.
4.8 shows that M favours values higher than M = 20MPl. This also highlights the potency of
the Planck data in constraining different scenarios within an inflationary model.

In the following, we refer to case b) for results that correspond to a more physical model. From
the evidence ratios in Table 4.5, we see that there is definite evidence against the inflection
point model, so there is some disfavour against the it, but it cannot be ruled out completely.
Future work should look at different scenarios of this novel inflection point inflation model as
it promises to draw out interesting insights, e.g. look at log10(|∆ − 1|) ≈ 0 taking into careful
consideration the initial conditions for inflation.

Let us now look at the triangle plots. From the 2015 Planck inflation paper (Planck Collabora-
tion, Ade, et al., 2016), the bound on r (pivot scale at k = 0.002 Mpc−1) is r < 0.10, which is
consistent with the posterior distribution for r above. The scalar spectral index ns is reported
to be at 0.971 ± 0.005, so within 2σ, our results for the inflection point inflation model are in
agreement with Planck’s results for the spectrum when characterised with the empirical vari-
ables r and ns. However, large values of M corresponds to a purely quadratic potential, which
is disfavoured.

The new inflection point inflation model proposed by Musoke and Easther demonstrate that
it can generate a large but not arbitrary range of the empirical spectral parameters r and ns.
The analysis here shows that the constraints on r derived with the Planck High−l TT, Planck
lowTEB, and BAO likelihoods lead to posteriors that are very different from the priors, indicating
that current data places increasingly tight constraints on large field inflationary scenarios. Future
work should incorporate the BK14 likelihood as it possesses the power to further constrain ns
and r as shown above in Section 4.5.3.
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Chapter 5

Understanding the Need for Dark
Matter

As mentioned above, the angular power spectrum of the cosmic microwave background (CMB)
is sensitive to many cosmological parameters, including dark matter, parameterised by Ωch

2.
Dark matter is the invisible substance that does not emit or absorb light, but only interacts
with baryonic matter gravitationally.

There are many independent indirect lines of evidence for dark matter. The first set of obser-
vations that suggested the existence of dark matter was made by Fritz Zwicky (Zwicky, 1937)
almost 80 years ago, where he used measurements of the motion of galaxies at the Coma Cluster
edge to infer its mass. This was compared with the mass estimate based on the cluster’s lumi-
nosity and number of galaxies contained. The amount of visible mass could not account for the
required mass to ensure stability of the motions of the galaxies at the edge of the cluster. This
led Zwicky to infer the existence of dark matter.

Modern efforts started with Vera Rubin and Kent Ford in the late 1960s (Rubin & Ford, 1970),
where they measured the radial velocities of 67 H II (ionized hydrogen) regions at varying
distances from the centre of the Andromeda galaxy. This work formed the basis of the consensus
in the astronomical community that dark matter exists. Key work by Rubin and others (Rubin,
Ford, & Thonnard, 1980) asked the question ‘Is the luminous matter only a minor component
of the total galaxy mass?’ The answer turned out to be ‘yes’.

Beyond measurements of galactic clusters and galaxies, there are other independent inferences
of the existence of dark matter, from gravitational lensing to observations of the Bullet Cluster.
In this project, we looked at how dark matter explains the CMB. Part of the motivation for this
project came from criticisms by dark matter naysayers, who instead proposed modifications to
Newtonian theory, the modified Newtonian dynamics (MOND), to account for the dark matter.
While MOND can explain the galaxy rotation curves, it does not explain the other independent
indirect observations of dark matter, including the CMB.

We look at how the addition of dark matter, parameterised by Ωch
2, would affect the angular

power spectrum. This is done by comparing the best fit from Planck and the best fit to data
for Ωch

2 ≈ 0. We quantify this with a χ2 analysis and we will demonstrate the incredible
predictive power of dark matter in explaining current observations. While this is physically well-
understood, such a quantitative analysis has not been done before until now. In the end, through
observations of the CMB, we show that alternative explanations for dark matter (e.g. modified
gravity) can be discounted by the simple addition of dark matter to existing cosmological models.
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5.1 Algorithms

In order to assess the need for dark matter to explain the CMB, we used CosmoMC to carry
out parameter estimation. Two methods incorporated in CosmoMC were used for this analysis -
the Metropolis-Hastings algorithm and the Bound Optimisation BY Quadratic Approximation
(BOBYQA).

5.1.1 Metropolis-Hastings

The Metropolis-Hastings algorithm is an MCMC method for generating a set of random samples
from some probability distribution, which is well-suited to the dimensionality (on the order of
about 10) of the probability distribution being probed. We describe the Metropolis-Hastings
algorithm briefly:

1. Choose an initial point to start with, say θn - this is based on the central values for each
of the parameters in the initial input parameter file.

2. Use a proposal distribution, q(θn,θn+1), to ‘propose’ a point in the likelihood region, the
‘target distribution’, to sample next. The proposal distribution will just help to generate
samples.

3. Accept the proposed new point to ‘jump’ to with probability(Lewis & Bridle, 2002)

α(θn,θn+1) = min

{
1,
P (θn+1)q(θn+1,θn)

P (θn)q(θn,θn+1)

}
,

where the transition probability is

T (θn,θn+1) = α(θn,θn+1)q(θn,θn+1).

We did not assume that the initial sample point starts out at or near the equilibrium region
in parameter space, i.e. the chain burns in to equilibrium. To this end, we accounted for the
burn-in period by discarding the first 20% of the MCMC chains to ensure that the samples came
from the posterior distribution.

5.1.2 BOBYQA

BOBYQA (J. D. Powell, 2009) is an iterative algorithm that will eventually yield the values
of the parameters corresponding to the maximum likelihood. This will work for hundreds of
parameters, however, BOBYQA requires that the calculated likelihood at each ‘step’ be a valid
number for every point in parameter space. For example, there were many instances whereby
the algorithm stopped because after 400 samples where the corresponding region of parameter
space returned a (numerical) zero likelihood. The associated error message is

1 Out of range finding H0: 1.040850
Warning: Minimizer does not currently properly support non-boundary LogZero rej ec-
tions

BOBYQA works by starting at a point in parameter space, dictated by the central values for the
parameters in the initial input parameter file (.ini extension), then ‘exploring’ the likelihood space
and finding the maximum likelihood through iteration. Once the parameter values converge to
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within some abstract parameter space radius, the algorithm stops. Using a sensible proposal
matrix helps speed up convergence.

Since BOBYQA usually finds the best-fit values much faster than Metropolis-Hastings, we used
BOBYQA for the bulk of the parameter search. Finally, Metropolis-Hastings was used to refine
the guess, give error estimates, and also generate triangle plots (using GetDist).

5.2 Methodology

Here, we will use CosmoMC to carry out parameter estimation. In particular, we will look at
the best fit cosmological parameters that correspond to (almost) zero dark matter, and see how
this affects the angular power spectrum.

Originally, we intended to find the best fit value for Ωch
2 = 0 right away, however this led to

CAMB not being able to easily calculate the best fit Cl values, with the output file returning

0 WARNING: FindBestFit did not converge
Best-fit results:
Not allocated theory!!!

The key problem is that setting Ωch
2 = 0 sets the likelihood towards infinity at the ‘concordance

point’. We need to ‘step’ towards this limit. Let us say that for the Metropolis-Hastings
algorithm, we start at some sample point in the likelihood region, corresponding to the original
best fit set of cosmological parameters (ΛCDM). With the Planck High−l temperature and
lowTEB likelihoods, this set is

Parameter Value

Ωbh
2 0.02222± 0.00023

Ωch
2 0.1197± 0.0022

H0(km s−1 Mpc−1) 67.31± 0.96
τ 0.078± 0.019

ln(1010As) 3.089± 0.036
ns 0.9655± 0.062

Table 5.1: Best-fit cosmological parameters from Planck

The Metropolis-Hastings algorithm will be able to proceed if the next proposed sample point is
not in some region of non-zero likelihood. This also means choosing a proposal distribution and
parameter step size which is not too wide or large so that the target distribution is no longer
sampled, but not too narrow or small such that it does not probe the entire target distribution
in a meaningful manner. After many iterations, the parameter values converge around some
pre-defined radius of convergence and the algorithm stops.

However, if one starts at say, Ωch
2 = 0.00005 right away, the sample point will most likely be in

a region of zero likelihood, causing the algorithm to stop and report the error in the box above.
To overcome this, one can decrease Ωch

2 in ‘steps’. Say we next want to find the corresponding
best fit for Ωch

2 = 0.1100 (i.e. a decrease in Ωch
2 = 0.01). After running the algorithm, we are

given a set of best-fit parameter values which will inform our decision for the next input sample
point (with Ωch

2 = 0.1000). This goes on until Ωch
2 = 0.00005, effectively ‘0 dark matter’.

There is nothing rigorous about this method, but it serves to provide a relatively quick way to
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find sensible sample points. The task was also alleviated at times by making use of CAMB (in
Python) to find a rough ‘best fit’ to the observed CMB angular power spectrum by eye.

This ‘mountain range analysis’ was done using the maximum likelihood routine in BOBYQA
(action = 2 in CosmoMC). The final estimation for the parameter values was carried out with
the Metropolis-Hastings algorithm (action = 0).

For various scenarios (described below), the step size for reducing Ωch
2 was not straightforward.

Sometimes Ωch
2 = 0.01 was too large, so step sizes of Ωch

2 = 0.002 had to be done. Additionally,
the runtime for the BOBYQA algorithm ranged from 15 minutes to 40 hours for some parameter
values, highlighting the difficulty of the problem. In the next section, we will show one practical
example of the implementation of the ‘mountain range’ method described above.

5.3 Minimal Dark Matter

From the arguments above at the start of the section, we know that there are many independent,
though indirect, observations of the effects dark matter has on baryonic matter. However, for
this project, let us see what happens when we have Ωch

2 ≈ 0, using the ‘mountain range’
process we described earlier. We simply quote the final results for various scenarios. We make
comparisons with respect to the baseline model with parameters in Table 5.1.

In this section, we will use the following Planck likelihoods (not all at once, though High−l TT
is always used):

Designation File name Description

High−l TT plik dx11dr2 HM v18 TT Temperature likelihood for l ≥ 30
Low−l TT lowl Temperature likelihood for l ≤ 29
lowTEB lowTEB Temperature and polarization likelihood for l ≤ 29
lensing lensing Lensing likelihood (temperature)

Table 5.2: List of Planck likelihoods used for Ωch
2 = 0

In Section 5.3.1 we present an example of the implementation of the ‘mountain range’ process.
We only use results in Sections 5.3.2 and 5.3.3 for our analysis.

5.3.1 Example

Here we look at the case where we set ΩK = 0 (i.e. flat universe), and we have no lensing of the
CMB, i.e. in batch2/common.ini (settings),

use nonlinear lensing = F
CMB lensing = F

We point out that the High−l temperature likelihood and the low−l temperature (only) likeli-
hood (lowl.ini) were used for the ‘mountain range’ analysis example. The final result from the
Metropolis-Hastings algorithm used the same likelihoods. In later sections, we use the Planck
lowTEB likelihood instead. Again, we emphasise that the ‘mountain range’ analysis serves to
provide sensible initial sample points corresponding to Ωch

2 = 0.00005 (i.e. very small dark
matter content) for the Metropolis-Hastings run. Let us see how this works in practice in Table
5.3. In this scenario, we went down in steps of Ωch

2 = 0.02.
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There are many degeneracies in the baseline ΛCDM model for the CMB angular power spectrum.
However, we do know, ceteris paribus, how each parameter affects the CMB angular power
spectrum (more below). We used CAMB to inform us (by eye) of the best initial sample point
for each value of Ωch

2 probed. One might argue that if one knows how reducing the Ωch
2

affects the other 5 cosmological parameters and/or the angular power spectrum, surely the
problem is trivial. However, this change is not known a priori and there is no simple, clear
relationship between the change in Ωch

2 and how the other parameters change, not to mention
possible degeneracies for such a large modification to a key parameter. Thus the ‘mountain
range’ analysis is the most effective way of finding the best-fit parameters (and power spectrum)
corresponding to Ωch

2 = 0.

Ωch
2 ln(1010As) ns Ωbh

2 τ H0

Starting values 0.1186 3.062 0.9677 0.02226 0.066 67.81
Best fit from BOBYQA 0.1275 3.036 0.9392 0.02020 0.046 62.48

Starting values 0.1000 2.95 0.9500 0.02000 0.050 75.00
Best fit from BOBYQA − 3.19 1.0057 0.02187 0.156 75.19

Starting values 0.0800 3.35 1.1000 0.02300 0.250 90.00
Best fit from BOBYQA − 3.45 1.0753 0.02324 0.315 87.37

Starting values 0.0600 3.60 1.1500 0.02500 0.400 110.00
Best fit from BOBYQA − 3.69 1.1614 0.02484 0.457 103.54

Starting values 0.0400 4.05 1.2500 0.02500 0.600 110.00
Best fit from BOBYQA − 3.99 1.2660 0.02618 0.632 126.06

Starting values 0.0200 4.30 1.3500 0.02700 0.800 150.00
Best fit from BOBYQA − 4.42 1.3925 0.02573 0.878 161.74

Starting values 0.00005 4.60 1.4500 0.02500 0.960 240.00
Best fit from BOBYQA − 5.20 1.5750 0.02091 1.289 256.26

Table 5.3: Illustrating the ‘mountain range’ analysis

We note that in this case, we have

Ωc =
Ωch

2

h2
=

0.00005(
256.26

100

)2 ≈ 7.61× 10−6,

which is essentially 0. Finally, we use the Metropolis-Hastings algorithm to get a refined set of
parameter values and corresponding errors, and also obtain triangle plots. Let us now look at
the best-fit parameters, corresponding power spectrum and the triangle plot.

Parameter Value

ln(1010As) 5.24± 0.06
ns 1.576± 0.004

Ωbh
2 0.0209± 0.0003

τ 1.31± 0.03
H0 256.3± 1.5

-ln(likelihood) 4586.8380
χ2 9173.6760

Table 5.4: Best-fit cosmological parameters to Planck data with no lensing and Ωch
2 = 0.00005
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Figure 5.1: Comparing Ωch
2 = 0.00005 and Planck best fit power spectrum for no lensing

Figure 5.2: Triangle plot for Ωch
2 = 0.00005 and no lensing
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Comparing the values from Tables 5.3 and 5.4, we can see how the ‘mountain range’ analysis
refines our guess for the initial sample point.

5.3.2 Lensing + TEB

Let us now look at the case where ΩK = 0, and we have that the CMB is lensed, but instead
of the low−l temperature likelihood, we use the low−l temperature and polarization likelihood
lowTEB. Having the polarisation likelihood allows us to put constraints on the polarisation of
the CMB and on the reionisation history. The inclusion of lensing suppresses structure in the
CMB angular power spectrum, but it does not have a significant impact on our analyses. The
best-fit cosmological parameters are:

Parameter Value

ln(1010As) 4.84± 0.05
ns 1.566± 0.004

Ωbh
2 0.0240± 0.0004

τ 1.11± 0.03
H0 242.1± 1.2

-ln(likelihood) 10577.2400
χ2 21154.4800

Table 5.5: Best-fit cosmological parameters to Planck data with lensing and Ωch
2 = 0.00005

and lowl TEB likelihood

Here we have that

Ωc =
Ωch

2

h2
=

0.00005(
242.1
100

)2 ≈ 8.53× 10−6.

The associated power spectrum and triangle plot are as follows

Figure 5.3: Comparing Ωch
2 = 0.00005 and Planck best fit power spectrum for lensing
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Figure 5.4: Triangle plot for Ωch
2 = 0.00005 and lensing and lowl TEB likelihood
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5.3.3 Fixed H0 + Lensing + TEB

Let us now look at the case where ΩK is varied, H0 is fixed, and we have lensing of the CMB. We
use the low−l temperature and polarization likelihood lowTEB here. The best-fit cosmological
parameters are:

Parameter Value

ln(1010As) 5.60± 0.04
ns 1.574± 0.004

Ωbh
2 0.01772± 0.00007

τ 1.49± 0.02
H0 67.10± 0.11
ΩK −0.0516± 0.0002

-ln(likelihood) 10749.6900
χ2 21499.3800

Table 5.6: Best-fit cosmological parameters to Planck data with lensing and Ωch
2 = 0.00005

and lowl TEB likelihood

Here we have that

Ωc =
Ωch

2

h2
=

0.00005(
67.10
100

)2 ≈ 1.11× 10−4.

The associated power spectrum and triangle plot are as follows

Figure 5.5: Comparing Ωch
2 = 0.00005 and Planck best fit power spectrum for lensing
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Figure 5.6: Triangle plot for Ωch
2 = 0.00005 and lensing and lowl TEB likelihood with fixed H0

We note that we cannot actually fix H0, but we can only restrict it to a very small range,
between 67 km s−1 Mpc−1 and 69 km s−1 Mpc−1. However, these values are within 1σ of the
measured values for all different likelihood combinations in the 2015 Planck analysis (Planck
Collaboration, Ade, P. A. R., et al., 2016).
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5.4 Discussion

Putting it altogether, we get

Figure 5.7: Comparing all the angular power spectra

Parameter Lensing Fixed H0

TEB Lensing
TEB

ln(1010As) 4.84 5.60
ns 1.566 1.574

Ωbh
2 0.0240 0.01772

τ 1.11 1.49
H0 242.1 67.10
ΩK 0.0 −0.0516

Table 5.7: Summary of the best-fit values for the cosmological parameters (without the uncer-
tainties

In this section, we do not explicitly specify the cosmological prior ranges used for parameter
estimation as the range varies depending on the value of Ωch

2. However, our choices of the prior
do not affect parameter estimation as long as they are wide enough so that regions of nontrivial
likelihood are explored (Easther & Peiris, 2012).

The most prominent thing we see immediately from Fig. 5.7 is that the odd-numbered peaks
are weakened and the even-numbered peaks are enhanced. This is the case with all the scenarios
explored in general. This can be explained qualitatively. However, we should first point out
that these are the best fits to the Planck CMB data (i.e. the likelihoods) in the absence of dark
matter. This investigation demonstrates the extent to which the dark matter is necessary to
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explain the CMB angular power spectrum. Physically, the inclusion of dark matter corresponds
to the existence of deeper gravitational potential wells in the baryon-photon fluid in which
compression (odd peaks) is enhanced and rarefaction (even peaks) is suppressed, relative to a
dark matter-less universe.

We could not bring Ωch
2 to exactly 0 because there were initial conditions set in CAMB that

assumed non-zero dark matter, however we proceeded with the analysis using Ωch
2 = 0.00005.

Firstly, we see in general that ln(1010As) has increased, i.e. the amplitude of the scalar per-
turbations is larger. From Fig. 3.4, we would expect the angular power spectrum to be shifted
vertically upwards, i.e. temperature fluctuations are larger on all scales (though we do have not
the same magnitude of increase for all scales - this effect is more prominent at larger angular
scales compared to at smaller angular scales). However, this can be offset by the larger value of
τ , the reionization optical depth, which parameterises the Thomson scattering of CMB photons
off electrons (described prior). This relates to the temperature fluctuations by

∆T =
δT

TCMB
∝ e−τ ;

we can relate this to the intensity (of CMB photons) by

Inew = I0(1 + f(θ)e−τ )

where f(θ) is some direction-dependent function. So for a larger value of τ , there is a correspond-
ingly larger scattering rate of the CMB photons, which leads to a ‘damping’ of the temperature
fluctuations on all (angular) scales.

Looking at ns, we see from Table 5.7 that the best-fit values for ns are around 1.6 for all scenarios.
From Figure 3.5, this would translate to a suppression of the power spectrum at larger angular
scales and a slight enhancement on the smaller angular scales (spectrum is ‘pivoting’).

We know how Ωbh
2 changes the angular power spectrum. A reduction in Ωbh

2 (hence baryon
content) translates to a suppression in the temperature fluctuations for the odd peaks (less
compression), and a relatively lesser degree of suppression of the even peaks (lower rarefaction).

Figure 5.8: Changing Ωbh
2
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Let us look how the cosmological parameters affect the location of the peaks. We go back to
the expression we had for the Hubble parameter in Eq. 2.3,

H(z) = H0

√
ΩM (1 + z)3 + ΩR(1 + z)4 + ΩΛ.

The comoving redshift-distance relation is then from Eq. 2.4,

d =
c

a0H0

∫ z

0

dz′√
ΩM (1 + z′)3 + ΩR(1 + z′)4 + ΩΛ

. (5.1)

We can then define θ, the angular size of some given structure (in CMB),

θ =
s

dA
,

where s is the sound horizon length (i.e. distance that sound travelled since Big Bang until last
scattering), and dA is the angular diameter distance. dA can be related to d, where

dA = ad =
ac

H0

∫ z

0

dz′√
ΩM (1 + z′)3 + ΩR(1 + z′)4 + ΩΛ

.

We can see a few things from this relation. First, we see that θ ∝ 1/dA ∝ H0 =⇒ θ ∝ H0. A
larger Hubble constant implies a more rapid expansion, and so as the last scattering surface is
fixed, we get a younger universe (age of universe is lower), implying that the CMB is closer. So
we would observe a larger temperature fluctuation at larger angular scales (i.e. at lower l). We
illustrate this in the figure below.

Figure 5.9: Changing H0

Let us first look at how just changing H0 in the set of parameters from Table 5.3.2 affects the
angular power spectrum
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Figure 5.10: Changing H0 for the case of lensing + High−l TT and low−l TEB

Bringing this altogether, we see that even though increasing As leads to more pronounced
temperature fluctuations on all scales, the ‘damping’ effects of τ and the tilting of power spectrum
from ns are the main contributors to the lower height of the first peak relative to the Planck
best-fit power spectrum. This is also in spite of the fact that the increase in H0 contributed to
larger power in the angular spectrum at larger angular scales (i.e. at lower l).

For the second peak, we see something similar with respect to As and τ , to a lesser degree.
The scalar spectral index ns does not change the second peak much, and having an increased
H0 resulted in larger temperature fluctuations. This is reversed for the third peak. A possible
future extension to this work would be to deconvolve the degeneracy pertaining to the location
of the third peak in particular, where relative to the Planck best fit, it can be seen that the peak
is shifted slightly to the right.

Lastly, let us look at the last two cases explored, where H0 was ‘fixed’. The Planck best fit was
(67.31± 0.96) km s−1 Mpc−1. In CosmoMC, H0 was parameterised with θ, the angular scale of
the sound horizon. Even if θ was kept fixed, there was some room for H0 to vary. This means
that we could only tighten the bound for H0, but not fix it per se. However, we note from Fig.
5.9 that a shift in about 1 km s−1 Mpc−1 does not change the CMB angular power spectrum
much.

The biggest differences pertain to the relatively lowered Ωbh
2 and consequently, a negative

curvature (gave it a prior). We look first at how changing Ωbh
2 between the best-fit value (for
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the model) and the Planck best fit value of Ωbh
2 = 0.02222 affects the angular power spectrum.

Figure 5.11: Fixed H0 + Lensing + High−l TT and low−l TEB; changing Ωbh
2

We see that having the ‘new’ value of Ωbh
2 shifts the power spectrum to the left slightly, i.e.

that at a fixed angular scale, the temperature fluctuations decrease. This does not change the
power spectrum much unless one looks at the smaller angular scales (damping tail), but this is
beyond the scope of the analysis. Let us explore the differences admitted by introducing the
non-zero curvature in the fitting process.
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Figure 5.12: Fixed H0 + Lensing + High−l TT and low−l TEB; changing curvature Ωk

Fig. 5.12 looks similar to Fig. 5.10. In fact, if we plot the two changes in black over each other,
we get

Figure 5.13: Comparing the change in parameters needed for the best fit
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There is some difference, but the main idea is similar, where it boils down to adding a ΩK(1+z′)2

term inside the square root in Eq. 5.1; curvature was ignored previously. However, having a
negative curvature (closed universe) would translate to a lower H(z) (i.e. slower expansion rate),
so we see an older universe which implies a CMB that is further away. This would translate to,
as seen in Fig. 5.12, a shift of the power spectrum to the right, not to the left as was argued for
5.10. Since Ωbh

2 does not alter the power spectrum much as illustrated in 5.11, the ‘pulling’ of
the power spectrum to the left must be dominated by the large value of ΩΛ. We have deferred
discussion of this quantity as it is beyond the scope of this work, but we can briefly mention it.

ΩΛ parameterises dark energy - the invisible substance in the universe that is purported to be
responsible for the current acceleration of the universe (Riess et al., 1998). Actually in our runs,
we get that ΩΛ is close to 1 (ΩΛ ≈ 0.995 for non-fixed-H0 models; ΩΛ ≈ 1.011 for fixed-H0

models, where curvature was negative). The Planck best fit gave ΩΛ = 0.6851. Hence it is
possible that this increase in ΩΛ would have produced a shift in the angular power spectrum to
the left.

One last feature that we briefly mention is the very large temperature fluctuation (or power) at
the largest angular scales

Figure 5.14: Comparing all the angular power spectra for l ≤ 20

This is thought to be due to the integrated Sachs-Wolfe effect, where the CMB photons are
gravitationally redshifted by time-evolving potential wells not caused by matter. This would be
the case in a dark-energy dominated universe (or radiation), which is what we have seen here.
This reflects what, in part, the angular power spectrum would look like on the largest scales in
the very distant future (see Fig. 6.4 of (Lange, 2007)).

Lastly, let us quantitatively examine the improvement of the best fit to Planck data when dark
matter is included in the calculation of the CMB angular power spectrum. Figure 3.3 showed
the cosmological best fit to Planck data. Figure 5.7 compares the cosmological best fit to the
best fit corresponding to Ωch

2 ≈ 0. We summarise the likelihood and χ2 (= −2ln(likelihood))
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values below:

Cosmological best fit Lensing + TEB Fixed H0 + Lensing + TEB

-ln(likelihood) 5636.2161 10577.2400 10749.6900
χ2 11272.4322 21154.4800 21499.3800

Table 5.8: Comparing χ2 values for the different best fits to Planck data

We calculate the associated p-value between the cosmological best fit and the best fit when
Ωch

2 ≈ 0, i.e. the probability that the best fit with Ωch
2 ≈ 0 can explain the Planck data, given

that the cosmological best fit is true. The p-value can be calculated using the stats module in
Python. The module mpmath is to deal with the representation of very small floats:

mpmath.exp(np.log(stats.distributions.chi2.sf(9882.0478, 70)))

where 21154.4800 − 11272.4322 = 9882.0478 is the difference in χ2 values and there were 70
degrees of freedom in the calculation for the CMB power spectra. The χ2 values from the two
different models are similar, so we use the χ2 value for lensing + TEB. Python returns a ‘division
by zero’ error; using the code with 7000 degrees of freedom returns a p-value of 3.20×10−104, so
we infer that the same calculation with 70 degrees of freedom will return an infinitesimally small
number. Therefore there is a drastic improvement in the fit to the Planck data that comes from
adding dark matter into the mix. We showed this with a quantitative analysis, a calculation
which has not been done before.

The purported alternatives (e.g. modified Newtonian dynamics) to dark matter address the
problem from the standpoint of galactic dynamics, which involves non-linear overdensities (par-
ticularly for spiral galaxies), star formation-feedback cycles, and non-trivial interactions between
the baryonic and reputed dark matter content. The complex interplay of these different factors
makes it difficult to deconvolve the effects of dark matter from that of gas dynamics.

On the other hand, the CMB is largely analysed within the regime of linear perturbation theory,
and the simple integration of the dark matter hypothesis improves the fit to data at the 10100

level and accounts for observed data, leaving no significant residuals or clear discrepancies. In
view of this, dark matter clearly possesses consequential predictive power, and suggests that any
proposed dark matter alternative (e.g. modified Newtonian dynamics) would have to ‘mimic’
dark matter with a high degree of fidelity in order to match observations.
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Chapter 6

Conclusions

In this dissertation, we have looked at two facets of cosmology using the 2015 Planck likelihoods.
Firstly, we performed Bayesian evidence calculations for some simple monomial inflaton poten-
tials and the new inflection point inflation model (Musoke & Easther, 2017) with a non-instant
reheating scenario. This was an update on the calculations done by (Easther & Peiris, 2012),
where we used the Planck likelihoods. Like Planck (Planck Collaboration, Ade, et al., 2016), we
have confirmed that

V (φ) =
λ

4
φ4

is decisively ruled out as the corresponding potential for the inflaton. There is also very strong
evidence against

V (φ) =
m2

2
φ2.

It is very likely that the forthcoming final data Planck release will grant further discriminatory
power between the inflationary models. We have also supplemented triangle plots to show the
joint posterior distributions. Further work can be done in calculating the different evidence
ratios arising from adopting contrasting scenarios within the inflection point inflation model
framework, which has only been introduced in the literature very recently and grants further
exploration.

Secondly, we have investigated the necessity of dark matter in explaining the cosmic microwave
background temperature angular power spectrum. To carry out this task, we looked at various
scenarios and brought Ωch

2 to near zero. However, this was not a straightforward calculation,
as CosmoMC will halt if it starts at a point of zero likelihood and does not find a region of a
non-trivial likelihood after a finite number of iterations. This is akin to a traveller trying to find
a large mountain in the middle of the Pacific Ocean (save Hawaii). In order to facilitate efforts,
we employed a ‘mountain range’ analysis, where we made sure the sampler started at a point of
non-zero likelihood (i.e. the foothills of a likelihood surface).

This investigation was carried out to highlight the extent to which dark matter is ‘detected’ in
the CMB. In particular, many ‘modified gravity’ proposals focus on rotation curves, but spiral
galaxies have complex dynamics whereas CMB physics takes place in the linear regime, giving a
clean system to analyse. Despite the original motivation, there is very rich physics in studying
the CMB and while there are many degeneracies within the ΛCDM cosmological model, it is
possible, with the Planck data, to start to deconvolve the degeneracies and get a (at least)
qualitative handle on understanding the CMB and what happens if dark matter is not included
in the ingredient mix.
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We have also carried out a brief quantitative analysis on the improvement of the best fit, to the
Planck data, with the addition of dark matter. While the cosmology community understands the
physical effects of dark matter on the CMB (and we recovered this above), such a quantitative
analysis has not been carried out before. We showed that there is a very low probability (≪
10−104) that the best fit to Planck data with Ωch

2 ≈ 0 explains the Planck data compared
with the cosmological best fit. The inclusion of dark matter in the mix thus improves the fit
to the Planck data at the 10100 level and leaves no significant residuals. This demonstrates the
predictive power of dark matter and puts forward a challenge to dark matter alternatives, such
as modified gravity, to account for observations with the high level of fidelity that dark matter
exhibits.
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Chapter 8

Appendix

8.1 CMB blackbody spectrum

from __future__ import division

import matplotlib.pyplot as plt

import numpy as np

import scipy as sp

h = 6.63e-34

c = 299792458

kb = 1.38e-23

### Plotting the CMB blackbody spectrum

#For cmb_blackbody.txt, we have that

#Reference1 = Table 4 of Fixsen et al. 1996 ApJ 473, 576.

#Reference2 = Fixsen & Mather 2002 ApJ 581, 817.

#Column 1 = frequency from Table 4 of Fixsen et al., units = cm^-1

#Column 2 = FIRAS monopole spectrum computed as the sum

# of a 2.725 K BB spectrum and the

# residual in column 3, units = MJy/sr

#Column 3 = residual monopole spectrum from Table 4 of Fixsen et al.,

# units = kJy/sr

#Column 4 = spectrum uncertainty (1-sigma) from Table 4 of Fixsen et al.,

# units = kJy/sr

#Column 5 = modeled Galaxy spectrum at the Galactic poles from Table 4 of

# Fixsen et al., units = kJy/sr

input_file = open(’cmb_blackbody.txt’, ’r’)

contents = input_file.read()

contents = contents.split()

input_file.close()

freq = np.array([float(contents[i]) for i in range(12,len(contents)-1,5)])

spectrum = np.array([float(contents[i]) for i in range(13,len(contents)-1,5)])

error = np.array([float(contents[i])/1000 for i in range(15,len(contents)-1,5)])

residual = np.array([float(contents[i])/1000 for i in range(14,len(contents)-1,5)])

theo = spectrum+residual

plt.errorbar(freq,spectrum,yerr=error,fmt=’x’)
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plt.plot(freq, theo, ’r-’)

plt.ylim([0,400])

plt.xlabel(’Frequency (cm$^{-1}$)’)

plt.ylabel(’Intensity (MJy/sr)’)

plt.title(’Monopole spectrum from FIRAS’)

plt.legend((’Planck blackbody’, ’data from FIRAS’), loc=’best’)

8.2 Last Scattering Surface

from __future__ import division

import numpy as np

import matplotlib

from scipy.optimize import curve_fit

def gaussian(x,a,b,c):

return a*np.exp(-(x-b)**2/(2*c**2))

plt.figure(figsize=(10,8))

# redshift values to use

z = np.linspace(0,1500,15001)

# approximate photon visibility function by Jones and Wyse 1985

dens = 5.26e-3 * (z/1000)**13.25*np.exp(-0.37*(z/1000)**14.25)

plt.plot(z,dens,’r-’)

# initial guess for the Gaussian parameters

pguess = np.array([0.0045, 1067, 80])

# applying the non-linear curve fitting

p,cov = curve_fit(gaussian,z,dens, p0=pguess)

#output is:

#p[0] - amplitude of Gaussian

#p[1] - where the Gaussian is centralised

#p[2] - the standard deviation

dens_fit = p[0]*np.exp(-(z-p[1])**2/(2*p[2]**2))

plt.plot(z,dens_fit, ’b-’)

plt.xlabel(’redshift $z$’, fontsize=15)

plt.ylabel(r’$e^{-\tau} \frac{d\tau}{dz}$’, fontsize=15)

plt.title(’Photon Visibility Function’, fontsize=18)

plt.legend((’Approximation’, ’Gaussian Fit’), loc=’best’, fontsize=15)

### calculating the time difference

c = 3e8

h = 0.6731

error_h = 0.0096

H0 = 100 * 1000/(1e6*3.26*3e8*365*3600*24)

z_95 = p[1] - 2*p[2]

z_5 = p[1] + 2*p[2]

error_z95 = np.sqrt(cov[1][1])

error_z5 = np.sqrt(cov[2][2])

# time difference
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Delta_t = 2/(3*H0*h) * (1/(1+z_95)**(3/2) - 1/(1+z_5)**(3/2))

# in years:

years = Delta_t/(3600*24*365)

#error calculation

dt_dH0 = -2/(3*H0*h)**2 * (1/(1+z_95)**(3/2) - 1/(1+z_5)**(3/2))

dt_dz95 = -1/(H0*h) * 1/(1+z_95)**(5/2)

dt_dz5 = 1/(H0*h) * 1/(1+z_5)**(5/2)

#error in seconds

error = np.sqrt(dt_dH0**2*(error_h*H0)**2 + dt_dz95**2*error_z95**2 +

dt_dz5**2*error_z5**2)

#error in years

error_years = error/(365*24*3600)

8.3 Angular Size of Largest Fluctuation

import numpy as np

import matplotlib.pyplot as plt

z_pd = 1100 #approximate redshift corresponding to photon decoupling

coeff = np.sqrt(1/(z_pd+1))/np.sqrt(3) #Also Omega_K = 0

k_neg = np.linspace(-1.0,0.0,1001) #Omega_K < 0

k_pos = np.linspace(0.0,1.0,1001) #Omega_K > 0

#calculating the angular size of the largest fluctuation in the

#photon-baryon fluid after photon decoupling

phi_neg = coeff*k_neg/np.sin(k_neg)

phi_pos = coeff*k_pos/np.sinh(k_pos)

plt.figure(figsize=(8,6))

plt.plot(k_neg, phi_neg)

plt.plot(k_pos, phi_pos)

plt.plot(0,coeff, ’rx’)

plt.legend((r’$\Omega_K<0$’, r’$\Omega_K=0$’, r’$\Omega_K>0$’), loc=’best’,

fontsize=15)

plt.xlabel(r’$\Omega_K$’, fontsize=15)

plt.ylabel(r’$\Delta\phi$ (radians)’, fontsize=15)

8.4 First Evidence Calculation

Here, we will describe an operational set of code to get one started on running their first evidence
calculations.

At the start of the project, one should request an account1 with the New Zealand eScience In-
frastructure2, the national computing research infrastructure. This project uses the Pan cluster

1https://wiki.auckland.ac.nz/display/CER/Request+an+account
2https://www.nesi.org.nz
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(Auckland). Once logged in3, enter into the SandyBridge node (newer infrastructure compared
with Westmere) and navigate into the project directory by doing

ssh build-sb
cd /projects/uoaxxxxx

where xxxxx corresponds to the project code. Next, download the following on your workstation:

• Planck Likelihood Code4

• Planck baseline likelihood data sets4

• CosmoMC5

• CosmoChord (CosmoMC-enabled version of PolyChord)6

• ModeChord7,

and move them into the cluster environment by executing

scp -r file you want to move abcd123@login.uoa.nesi.org.nz:/projects/uoa00518

Before doing anything else, load the appropriate module

module load intel/2015.02

The newest module (at the time of writing) intel/2017a has compatibility issues. NB: Make
sure that everything is compiled with the same module.

Follow the instructions by Antony Lewis8 to install the Planck likelihood. The only deviation
from the instructions is that in the 4th step, instead of

./waf configure –lapack mkl=$MKLROOT –install all deps

execute

./waf configure –install all deps

instead. Before building CosmoMC (i.e. running ‘make’), remember to move/copy the zipped
CosmoChord and ModeChord (in that order) files and extract the contents. The building process
will automatically detect PolyChord and ModeCode. Additionally, in CosmoMC/source/Makefile,
change the line (near the top)

MPIF90C ?= mpif90

to

MPIF90C ?= mpiifort

3https://wiki.auckland.ac.nz/display/CER/How+to+log+in+using+ssh+keys
4http://pla.esac.esa.int/pla/#cosmology
5http://cosmologist.info/cosmomc/readme.html
6https://ccpforge.cse.rl.ac.uk/gf/project/polychord/frs/?action=FrsReleaseBrowse&frs package id=249
7https://github.com/ucl-cosmoparticles/modechord
8http://cosmologist.info/cosmomc/readme planck.html
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for the version of Fortran most compatible with the cluster module intel/2015.02. At this point,
feel free to execute

make

in the CosmoMC folder.

Start off by running a test case to make sure everything is working. We will first set up the
test case and then elaborate on the input file. In the CosmoMC folder, open up a text editor for
test.ini. Add the line

file root = first test #to your liking

under

root dir = chains/

Then change the logical from F to T in

checkpoint = F

also change the number from 10 to 0 in

indep sample = 10

The next step is to set up a job script for the cluster. In

/projects/uoaxxxxx/

set up a new text file with the extension .sl (e.g. modechord job.sl) and use this minimal working
example

#!/bin/bash -e # shebang - points to path of program
#SBATCH -J first test #job name to keep track of it
#SBATCH -A uoa00518 #project name
#SBATCH –time=20:00:00 #how long you want the job to go on for; more on this below
#SBATCH –ntasks=16 #MPI tasks
#SBATCH –mem-per-cpu=4096 #4GB
#SBATCH –cpus-per-task=8 #threads per MPI
#SBATCH -C avx #AVX nodes are faster

module load intel/2015.02 #module needed for the job to run
ulimit -s unlimited #to prevent segmentation fault
cd /projects/uoa00518/Check 29Oct/cosmomc #tells program where the parameter file
is stored
srun ./cosmomc test planck.ini #run the cosmological model

If one follows the steps above and runs the job using
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sbatch modechord job.sl

they will see the message

Submitted batch job xxxxxxxx

then one can use the command

squeue -u [insert username]

to track the progress of the job. It is also possible to set up the job script such that an email is
sent once the job starts and when the job ends (including failures/errors)9.

Once the job is running, one can check the ‘progress’ of the job by looking at the rate at which
the evidence values are converging. Execute

grep -iaw −−color “log(z)” slurm-xxxxxxxx.out

to look at the output file for the job.

Here are some miscellaneous, but important tips:

1. Visit https://web.ceres.auckland.ac.nz/portal/#/portal/hpc/cgi-bin/noheader/heatmap.cgi
to:

(a) Check out the current load of the cluster

(b) Check the jobs that are being queued. This is useful to see the approximate start
time of your time - hover over Cluster Status, click on Queued Jobs, then find your
job. Note this cannot be done with job arrays.

(c) Look at the job history. Hover over Cluster Job History to see:

i. Job Statistics - summarises the number of jobs and the resources used thus far.
One can also check the number of core hours left by running

show my projects

in the login node of the cluster. This is important! Jobs will stop running once
the allocated resources for the project run out. However, it is possible to ask for
more resources, so do check to make sure that one has enough resources.

ii. Detailed Job History - Summarises each completed job (whether failed or not),
including runtime, number of core hours used, job name, and the Job ID.

2. One will notice that

ntasks=16
cpus-per-task=8

in the script file. We found that this is the best combination for the evidence calculations to
run optimally. However, one should, before their proper runs, test different configurations

9https://support.nesi.org.nz/hc/en-gb/articles/115000194910-Submitting-Slurm-Jobs-on-Pan
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to see what is their best combination. Runs typically took 25-35 hours for the monomial
potentials, and about 50 hours for the inflection point inflaton. This is with 1000 live
points and 125 repeats per chain length (i.e. num repeats = 125).

3. Write different parameter files for the different models of inflation to not get confused.

4. Regarding CosmoMC-related errors, one can either look in CosmoCoffee10 or make a post
there.

5. Above, we wrote that we should have

checkpoint = T

Enabling this setting allows for .resume files to be created. So if a job ends prematurely
(due to wall time limit), the job can be started again (make sure settings are exactly the
same) and ‘resumed’ rather than starting all over again. These are saved in the same
folder as the produced chains. This is useful because:

(a) there is no need to run one 50-hour job with a wall time (of say) 60 hours, where the
job could be queued for a long time;

(b) running 2-3 jobs of about 20 hours of wall-time each means that the job stays in the
queue for a shorter time

However, they tend to be large files on the order of 1GB, so delete them once the run is
complete.

10http://cosmocoffee.info/viewforum.php?f=11
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8.5 Typical Parameter File

#Use Planck 2015 likelihoods
DEFAULT(./batch2/plik dx11dr2 HM v18 TT.ini) #high-l temperature likelihood
DEFAULT(./batch2/lowTEB.ini) #low-l temperature and polarization polarisation
#DEFAULT(./batch2/lowl.ini) #low-l temperature without polarisation
#DEFAULT(./batch2/lensing.ini) #for lensing

#other likelihoods
DEFAULT(./batch2/BAO.ini)
DEFAULT(./batch2/BKPlanck.ini)

#general settings
DEFAULT(./batch2/common.ini)

## INFLATION MODEL TO USE
DEFAULT(Models/lphi4/lphi4.ini)

## Reheating settings:
## Instant reheating
#DEFAULT(batch2/modecode inst.ini)
DEFAULT(batch2/modecode reheat3a.ini) #non-instant reheating

## Defaults
DEFAULT(batch2/modecode defaults.ini)
DEFAULT(batch2/modecode adjustments.ini)

# Many model parameters can be ’un-physical’. We make use of cosmomc’s logzero
# functionality, but this requires that it doesn’t stop when it hits an error
stop on error= F

#high for new runs
MPI Max R ProposeUpdate = 30

# used for faster convergence (more efficient sampling of likelihood)
propose matrix = ./planck covmats/base BAO TT lowTEB plik.covmat

#folder where files (chains, checkpoints, etc.) are stored
root dir = ./chains/

#root name for the files produced
file root = lphi4 bkp
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#action = 0 to MCMC, action = 1 to postprocess .data file
#action = 1 for important samples, action = 4 to quickly test likelihoods
#action = 5 for the PolyChord sampler
action = 5
DEFAULT(batch2/polychord.ini)
nlive = 1000
# was set to a number high enough so that the error in the evidences was about 0.20
num repeats = 125

num threads = 8
start at bestfit = F
#use feedback = 2 for more detailed output - very useful for error diagnosis
feedback = 1 #limited feedback
use fast slow = T

#to create .resume files
checkpoint = T

#sampling method = 7 is a new fast-slow scheme good for Planck
sampling method = 7
dragging steps = 3
propose scale = 2

# Set > 0 to make data files for importance sampling
# This is for rerunning chains with a different likelihood. Might be useful when # the
final data release for Planck comes out. indep sample = 0

#small speedups for testing
get sigma8 = F
#already F in batch2/modecode adjustments.ini

#REMEMBER, to use lensing, turn OFF semi slow parameters.
######## Semi Slow parameters ON #############
# Turn on semi-slow parameters
use nonlinear lensing = F
block semi fast = T

# Set up the fraction of time to spend on each type of parameter
nest frac slow = 0.75
nest frac semi slow = 0.20
nest frac semi fast = 0.00
nest frac fast = 0.05

######## Semi Slow parameters OFF #############
# Remove the equivalent lines directly above, and uncomment
# the lines below in order to turn on non-linear lensing
# (and turn off semi slow parameters)

# # Turn off semi-slow parameters
#use nonlinear lensing = T
#block semi fast = F
#
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# # Set up the fraction of time to spend on each parameter
#nest frac slow = 0.95
#nest frac semi slow = 0.00
#nest frac semi fast = 0.00
#nest frac fast = 0.05

## priors for physical parameters
H0 min = 20
H0 max = 100

#to vary parameters, set param[name] = center, min, max, start width, propose width
#for fixed, can just fix fixed value

#MODIFIED P(K)
#inflationary potential parameters
#N pivot
param[N pivot] = 50.0 20.0 90.0 0.1 0.1
#vparams array
param[vpar1] = -12.82 -16.0 -10.0 0.001 0.001
param[vpar2] = 0
param[vpar3] = 0
param[vpar4] = 0
param[vpar5] = 0
param[vpar6] = 0
param[vpar7] = 0
param[vpar8] = 0
param[vpar9] = 0
param[vpar10] = 0
param[vpar11] = 0
param[vpar12] = 0
param[vpar13] = 0
param[vpar14] = 0
param[vpar15] = 0
param[vpar16] = 0
param[vpar17] = 0
param[vpar18] = 0
param[vpar19] = 0
param[vpar20] = 0
# END MODIFIED P(K)

param[omegabh2] = 0.02225 0.019 0.025 0.0001 0.0001
param[omegach2] = 0.12 0.095 0.145 0.001 0.0005
param[theta] = 1.0411 1.03 1.05 0.004 0.004
param[tau] = 0.09 0.01 0.40 0.001 0.001

param[logA] = 3.1 2.5 3.7 0.001 0.001
#log[1010 A s]
param[ns] = 0.96 0.9 1.02 0.004 0.002
inflation consistency = T
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param[omegak] = 0
#param[w] = 0.33333 -1.0 1.0 0.001 0.001

#altered on 7 Sept
param[r] = 0.03 0 2 0.001 0.001
compute tensors = T

param[nrun] = 0
param[nrunrun] = 0

neutrino hierachy = degenerate
num massive neutrinos = 1
param[mnu] = 0.06

8.6 Making Triangle Plots

chain = ‘/Users/masonng/Documents/University/Honours Project/cosmomc/chains/’
# where the chains are stored
dirlist = [chain, chain+‘planck/000 omegach2’]
# tells the code where the chain is stored; can be altered to include your own folders
g = plots.getSubplotPlotter(chain dir=dirlist, analysis settings=‘ignore rows’:0.2)
# generates .pysamples for GetDist. Also include burn-in settings here if desired
roots = [‘base plikHM TT lowl’, ‘000 omegach2’]
# the root files that you want. You can add multiple roots to compare triangle plots.
params = [‘omegabh2’, ‘logA’, ‘ns’, ‘tau’, ‘H0’]
# the parameters you want to investigate
param 3d = None
g.triangle plot(roots, params, plot 3d with param=param 3d, filled compare=True,
shaded=False)
g.export(‘/Users/masonng/Documents/University/Honours Project/000 omegach2.pdf’)
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